全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

A Review of Methods for Detecting Rumors on Social Networks Using Social Circle Mining

DOI: 10.4236/sn.2025.142002, PP. 15-44

Keywords: Rumor Detection, Social Network Analysis, Social Circles, Graph Mining

Full-Text   Cite this paper   Add to My Lib

Abstract:

Currently, social platforms provide places for people not only to gather information but also to generate and propagate rumors. Consequently, rumor detection has become a major global task for mining fake information from social networks. Although social circles have the capacity to describe users’ behavior preferences and to impact the scope and spreading speed of rumors, numerous studies have ignored them when designing rumor prediction models. To address this oversight, we conducted a technical investigation and comparison of state-of-the-art procedures for detecting rumors, focusing on the role of data mining in social circles. This survey will assist researchers in determining the most effective techniques and appropriate future research directions.

References

[1]  Allcott, H. and Gentzkow, M. (2017) Social Media and Fake News in the 2016 Election. Journal of Economic Perspectives, 31, 211-236.
https://doi.org/10.1257/jep.31.2.211
[2]  Oyza, I. and M. Edwin, A. (2015) Effectiveness of Social Media Networks as a Strategic Tool for Organizational Marketing Management. The Journal of Internet Banking and Commerce, 1.
https://doi.org/10.4172/1204-5357.s2-006
[3]  Alkhodair, S.A., Ding, S.H.H., Fung, B.C.M. and Liu, J. (2020) Detecting Breaking News Rumors of Emerging Topics in Social Media. Information Processing & Management, 57, Article ID: 102018.
https://doi.org/10.1016/j.ipm.2019.02.016
[4]  Pathak, A.R., Mahajan, A., Singh, K., Patil, A. and Nair, A. (2020) Analysis of Techniques for Rumor Detection in Social Media. Procedia Computer Science, 167, 2286-2296.
https://doi.org/10.1016/j.procs.2020.03.281
[5]  Qin, Y., Dominik, W. and Tang, C. (2018) Predicting Future Rumours. Chinese Journal of Electronics, 27, 514-520.
https://doi.org/10.1049/cje.2018.03.008
[6]  Zheng, P., Huang, Z., Dou, Y. and Yan, Y. (2023) Rumor Detection on Social Media through Mining the Social Circles with High Homogeneity. Information Sciences, 642, Article ID: 119083.
https://doi.org/10.1016/j.ins.2023.119083
[7]  Mengist, W., Soromessa, T. and Legese, G. (2020) Method for Conducting Systematic Literature Review and Meta-Analysis for Environmental Science Research. MethodsX, 7, Article ID: 100777.
https://doi.org/10.1016/j.mex.2019.100777
[8]  Miller, D.E. (1992) “Snakes in the Greens” and Rumor in the Innercity. The Social Science Journal, 29, 381-393.
https://doi.org/10.1016/0362-3319(92)90002-y
[9]  Rosnow, R.L. (1976) Rumor and Gossip: The Social Psychology of Hearsay. Elsevier.
[10]  Bock, P.G. (1964) A Theory of Rumor Transmission. Public Opinion Quarterly, 28, 687-690.
https://doi.org/10.1086/267293
[11]  Kapferer, J.N. (1990) Rumors: Uses, Interpretations, and Images. Routledge.
[12]  DiFonzo, N. and Bordia, P. (2007) Rumor, Gossip and Urban Legends. Diogenes, 54, 19-35.
https://doi.org/10.1177/0392192107073433
[13]  Zubiaga, M.L.A. and Procter, K.B.R.N. (2015) Towards Detecting Rumours in Social Media. Proceedings of the AAAI Workshop, Austin, 25-30 January 2015, 35-41.
[14]  Liu, X.F., Burton-Jones, A., Liu, D.B.J. and   Xu, A. (2014) Rumors on Social MEDIA in Disasters: Extending Transmission to Retransmission. Proceeding of the 19th Pacific Asia Conference on Information Systems.
http://aisel.aisnet.org/pacis2014/49
[15]  Ahsan, M., Kumari, M. and Sharma, T.P. (2019) Rumors Detection, Verification and Controlling Mechanisms in Online Social Networks: A Survey. Online Social Networks and Media, 14, Article ID: 100050.
https://doi.org/10.1016/j.osnem.2019.100050
[16]  Alpaydin, E. (2020) Introduction to Machine Learning. The MIT Press.
[17]  Jordan, M.I. and Mitchell, T.M. (2015) Machine Learning: Trends, Perspectives, and Prospects. Science, 349, 255-260.
https://doi.org/10.1126/science.aaa8415
[18]  Gongane, V.U., Munot, M.V. and Anuse, A. (2022) Machine Learning Approaches for Rumor Detection on Social Media Platforms: A Comprehensive Survey. In: Gupta, D., Sambyo, K., Prasad, M. and Agarwal, S., Eds., Advanced Machine Intelligence and Signal Processing, Springer, 649-663.
https://doi.org/10.1007/978-981-19-0840-8_50
[19]  Doerr, B., Fouz, M. and Friedrich, T. (2012) Why Rumors Spread So Quickly in Social Networks. Communications of the ACM, 55, 70-75.
https://doi.org/10.1145/2184319.2184338
[20]  Castillo, C., Mendoza, M. and Poblete, B. (2011) Information Credibility on Twitter. Proceedings of the 20th international conference on World Wide Web, Hyderabad, 28 March-1 April 2011, 675-684.
https://doi.org/10.1145/1963405.1963500
[21]  Liu, Y., Xu, S. and Tourassi, G. (2015) Detecting Rumors through Modeling Information Propagation Networks in a Social Media Environment. In: Agarwal, N., Xu, K. and Osgood, N., Eds., Social Computing, Behavioral-Cultural Modeling, and Prediction, Springer, 121-130.
https://doi.org/10.1007/978-3-319-16268-3_13
[22]  Esteban-Bravo, M., Jiménez-Rubido, L.D.L.M. and Vidal-Sanz, J.M. (2024) Predicting the Virality of Fake News at the Early Stage of Dissemination. Expert Systems with Applications, 248, Article ID: 123390.
https://doi.org/10.1016/j.eswa.2024.123390
[23]  Bertsimas, D. and King, A. (2017) Logistic Regression: From Art to Science. Statistical Science, 32, 367-384.
https://doi.org/10.1214/16-sts602
[24]  Zhang, Z., Zhang, Z. and Li, H. (2015) Predictors of the Authenticity of Internet Health Rumours. Health Information & Libraries Journal, 32, 195-205.
https://doi.org/10.1111/hir.12115
[25]  Mu, Y., Niu, P., Bontcheva, K. and Aletras, N. (2024) Predicting and Analyzing the Popularity of False Rumors in Weibo. Expert Systems with Applications, 243, Article ID: 122791.
https://doi.org/10.1016/j.eswa.2023.122791
[26]  Noble, W.S. (2006) What Is a Support Vector Machine? Nature Biotechnology, 24, 1565-1567.
https://doi.org/10.1038/nbt1206-1565
[27]  Fernández-Delgado, E.C.M., Barro, D.A.S. and Fernández-Delgado, A. (2014) Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15, 3133-3181.
[28]  Wang, S., Li, Z., Wang, Y. and Zhang, Q. (2019) Machine Learning Methods to Predict Social Media Disaster Rumor Refuters. International Journal of Environmental Research and Public Health, 16, Article 1452.
https://doi.org/10.3390/ijerph16081452
[29]  Chen, T. and Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, 13-17 August 2016, 785-794.
https://doi.org/10.1145/2939672.2939785
[30]  Gumaei, A., Al-Rakhami, M.S., Hassan, M.M., De Albuquerque, V.H.C. and Camacho, D. (2022) An Effective Approach for Rumor Detection of Arabic Tweets Using Extreme Gradient Boosting Method. ACM Transactions on Asian and Low-Resource Language Information Processing, 21, 1-16.
https://doi.org/10.1145/3461697
[31]  Li, Z., Zhang, Q., Wang, Y. and Wang, S. (2020) Social Media Rumor Refuter Feature Analysis and Crowd Identification Based on XGBoost and NLP. Applied Sciences, 10, Article 4711.
https://doi.org/10.3390/app10144711
[32]  Dey, A. (2016) Machine Learning Algorithms: A Review. International Journal of Computer Science and Information Technology, 7, 1174-1179.
[33]  Takahashi, T. and Igata, N. (2012) Rumor Detection on Twitter. The 6th International Conference on Soft Computing and Intelligent Systems, and the 13th International Symposium on Advanced Intelligence Systems, Kobe, 20-24 November 2012, 452-457.
https://doi.org/10.1109/scis-isis.2012.6505254
[34]  Timbers, T., Campbell, T. and Lee, M. (2022) Data Science. Chapman and Hall/CRC.
https://doi.org/10.1201/9781003080978
[35]  Chang, C., Zhang, Y., Szabo, C. and Sheng, Q.Z. (2016) Extreme User and Political Rumor Detection on Twitter. In: Li, J., Li, X., Wang, S., Li, J. and Sheng, Q., Eds., Advanced Data Mining and Applications, Springer, 751-763.
https://doi.org/10.1007/978-3-319-49586-6_54
[36]  Jain, S., Sharma, V. and Kaushal, R. (2016) Towards Automated Real-Time Detection of Misinformation on Twitter. 2016 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Jaipur, 21-24 September 2016, 2015-2020.
https://doi.org/10.1109/icacci.2016.7732347
[37]  Gao, Y., Wang, X., He, X., Feng, H. and Zhang, Y. (2022) Rumor Detection with Self-Supervised Learning on Texts and Social Graph. Frontiers of Computer Science, 17, Article No. 174611.
https://doi.org/10.1007/s11704-022-1531-9
[38]  Zeng, H. and Cui, X. (2022) SimCLRT: A Simple Framework for Contrastive Learning of Rumor Tracking. Engineering Applications of Artificial Intelligence, 110, Article ID: 104757.
https://doi.org/10.1016/j.engappai.2022.104757
[39]  Nithya, K., Krishnamoorthi, M., Easwaramoorthy, S.V., C R, D., Yoo, S. and Cho, J. (2024) Hybrid Approach of Deep Feature Extraction Using BERT-OPCNN & FIAC with Customized Bi-LSTM for Rumor Text Classification. Alexandria Engineering Journal, 90, 65-75.
https://doi.org/10.1016/j.aej.2024.01.056
[40]  Alawadh, H.M., Alabrah, A., Meraj, T. and Rauf, H.T. (2023) Attention-Enriched Mini-Bert Fake News Analyzer Using the Arabic Language. Future Internet, 15, Article 44.
https://doi.org/10.3390/fi15020044
[41]  Pathak, A.R., Pandey, M. and Rautaray, S. (2018) Application of Deep Learning for Object Detection. Procedia Computer Science, 132, 1706-1717.
https://doi.org/10.1016/j.procs.2018.05.144
[42]  Tan, L., Wang, G., Jia, F. and Lian, X. (2022) Research Status of Deep Learning Methods for Rumor Detection. Multimedia Tools and Applications, 82, 2941-2982.
https://doi.org/10.1007/s11042-022-12800-8
[43]  Cao, J., Guo, J., Li, X., Jin, Z., Guo, H. and Li, J. (2018) Automatic Rumor Detection on Microblogs: A Survey. arXiv: 1807.03505.
[44]  Ma, J., Gao, W. and Wong, K. (2018) Rumor Detection on Twitter with Tree-Structured Recursive Neural Networks. Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, 15-20 July 2018. 1980-1989.
https://doi.org/10.18653/v1/p18-1184
[45]  Ruchansky, N., Seo, S. and Liu, Y. (2017) CSI: A Hybrid Deep Model for Fake News Detection. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6-10 November 2017, 797-806.
https://doi.org/10.1145/3132847.3132877
[46]  Yu, F., Liu, Q., Wu, S., Wang, L. and Tan, T. (2017) A Convolutional Approach for Misinformation Identification. Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence, Melbourne, 19-25 August 2017, 3901-3907.
https://doi.org/10.24963/ijcai.2017/545
[47]  Wang, Y., Ma, F., Jin, Z., Yuan, Y., Xun, G., Jha, K., et al. (2018) EANN: Event Adversarial Neural Networks for Multi-Modal Fake News Detection. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, 19-23 August 2018, 849-857.
https://doi.org/10.1145/3219819.3219903
[48]  Chen, J., Zhang, W., Ma, H. and Yang, S. (2023) Rumor Detection in Social Media Based on Multi-Hop Graphs and Differential Time Series. Mathematics, 11, Article 3461.
https://doi.org/10.3390/math11163461
[49]  Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., et al. (2020) Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34, 549-556.
https://doi.org/10.1609/aaai.v34i01.5393
[50]  Wu, Z., Pi, D., Chen, J., Xie, M. and Cao, J. (2020) Rumor Detection Based on Propagation Graph Neural Network with Attention Mechanism. Expert Systems with Applications, 158, Article ID: 113595.
https://doi.org/10.1016/j.eswa.2020.113595
[51]  Zhang, X. and Gao, W. (2024) Predicting Viral Rumors and Vulnerable Users with Graph-Based Neural Multi-Task Learning for Infodemic Surveillance. Information Processing & Management, 61, Article ID: 103520.
https://doi.org/10.1016/j.ipm.2023.103520
[52]  Yan, Y., Wang, Y. and Zheng, P. (2023) A Graph-Based Pivotal Semantic Mining Framework for Rumor Detection. Engineering Applications of Artificial Intelligence, 118, Article ID: 105613.
https://doi.org/10.1016/j.engappai.2022.105613
[53]  Hashimoto, T., Kuboyama, T. and Shirota, Y. (2011) Rumor Analysis Framework in Social Media. TENCON 2011—2011 IEEE Region 10 Conference, Bali, 21-24 November 2011, 133-137.
https://doi.org/10.1109/tencon.2011.6129078
[54]  Cai, G., Wu, H. and Lv, R. (2014) Rumors Detection in Chinese via Crowd Responses. 2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014), Beijing, 17-20 August 2014, 912-917.
https://doi.org/10.1109/asonam.2014.6921694
[55]  Ajao, O., Bhowmik, D. and Zargari, S. (2018) Fake News Identification on Twitter with Hybrid CNN and RNN Models. Proceedings of the 9th International Conference on Social Media and Society, Copenhagen, 18-20 July 2018, 226-230.
https://doi.org/10.1145/3217804.3217917
[56]  Nguyen, T.T., Ren, Z., Nguyen, T.T., Jo, J., Nguyen, Q.V.H. and Yin, H. (2024) Portable Graph-Based Rumour Detection against Multi-Modal Heterophily. Knowledge-Based Systems, 284, Article ID: 111310.
https://doi.org/10.1016/j.knosys.2023.111310
[57]  Yan, Y., Wang, Y. and Zheng, P. (2023) Rumor Detection on Social Networks Focusing on Endogenous Psychological Motivation. Neurocomputing, 552, Article ID: 126548.
https://doi.org/10.1016/j.neucom.2023.126548
[58]  Hu, X., Xiong, X., Wu, Y., Shi, M., Wei, P. and Ma, C. (2023) A Hybrid Clustered SFLA-PSO Algorithm for Optimizing the Timely and Real-Time Rumor Refutations in Online Social Networks. Expert Systems with Applications, 212, Article ID: 118638.
https://doi.org/10.1016/j.eswa.2022.118638
[59]  Chen, W., Zhang, Y., Yeo, C.K., Lau, C.T. and Lee, B.S. (2018) Unsupervised Rumor Detection Based on Users’ Behaviors Using Neural Networks. Pattern Recognition Letters, 105, 226-233.
https://doi.org/10.1016/j.patrec.2017.10.014
[60]  Askarizadeh, M., Tork Ladani, B. and Manshaei, M.H. (2019) An Evolutionary Game Model for Analysis of Rumor Propagation and Control in Social Networks. Physica A: Statistical Mechanics and its Applications, 523, 21-39.
https://doi.org/10.1016/j.physa.2019.01.147
[61]  Myilsamy, K., Kumar, M.S. and Kumar, A.S. (2024) Optimal Control of a Rumor Propagation Model in Online Social Network by Considering Influential Nodes. Results in Control and Optimization, 14, Article ID: 100339.
https://doi.org/10.1016/j.rico.2023.100339
[62]  Khawaja, F.R., Zhang, Z., Memon, Y. and Ullah, A. (2024) Exploring Community Detection Methods and Their Diverse Applications in Complex Networks: A Comprehensive Review. Social Network Analysis and Mining, 14, Article No. 115.
https://doi.org/10.1007/s13278-024-01274-1
[63]  Anggrainingsih, R., Hassan, G.M. and Datta, A. (2024) Transformer-Based Models for Combating Rumours on Microblogging Platforms: A Review. Artificial Intelligence Review, 57, Article No. 212.
https://doi.org/10.1007/s10462-024-10837-9
[64]  Chang, Q., Li, X. and Duan, Z. (2024) A Novel Approach for Rumor Detection in Social Platforms: Memory-Augmented Transformer with Graph Convolutional Networks. Knowledge-Based Systems, 292, Article ID: 111625.
https://doi.org/10.1016/j.knosys.2024.111625
[65]  Lv, J., Wang, X. and Shao, C. (2022) TMIF: Transformer-Based Multi-Modal Interactive Fusion for Automatic Rumor Detection. Multimedia Systems, 29, 2979-2989.
https://doi.org/10.1007/s00530-022-00916-8
[66]  Aichner, T., Grünfelder, M., Maurer, O. and Jegeni, D. (2021) Twenty-five Years of Social Media: A Review of Social Media Applications and Definitions from 1994 to 2019. Cyberpsychology, Behavior, and Social Networking, 24, 215-222.
https://doi.org/10.1089/cyber.2020.0134
[67]  Garton, L., Haythornthwaite, C. and Wellman, B. (2006) Studying Online Social Networks. Journal of Computer-Mediated Communication, 3, JCMC313.
https://doi.org/10.1111/j.1083-6101.1997.tb00062.x
[68]  Stieglitz, S., Mirbabaie, M., Ross, B. and Neuberger, C. (2018) Social Media Analytics—Challenges in Topic Discovery, Data Collection, and Data Preparation. International Journal of Information Management, 39, 156-168.
https://doi.org/10.1016/j.ijinfomgt.2017.12.002
[69]  Albesher, A.S. and Alhussain, T. (2021) Evaluating and Comparing the Usability of Privacy in WhatsAPP, Twitter, and Snapchat. International Journal of Advanced Computer Science and Applications, 12, 251-259.
https://doi.org/10.14569/ijacsa.2021.0120829
[70]  Li, Q., Zhang, Q., Si, L. and Liu, Y. (2019) Rumor Detection on Social Media: Datasets, Methods and Opportunities. Proceedings of the Second Workshop on Natural Language Processing for Internet Freedom: Censorship, Disinformation, and Propaganda, Hong Kong, November 2019, 66-75.
https://doi.org/10.18653/v1/d19-5008
[71]  Buchanan, T. (2020) Why Do People Spread False Information Online? The Effects of Message and Viewer Characteristics on Self-Reported Likelihood of Sharing Social Media Disinformation. PLOS ONE, 15, e0239666.
https://doi.org/10.1371/journal.pone.0239666
[72]  Mu, Y., Bontcheva, K. and Aletras, N. (2023) It’s about Time: Rethinking Evaluation on Rumor Detection Benchmarks Using Chronological Splits. Findings of the Association for Computational Linguistics: EACL 2023, Dubrovnik, 2-6 May 2023, 736-743.
https://doi.org/10.18653/v1/2023.findings-eacl.55
[73]  Liu, F. and Li, M. (2018) A Game Theory-Based Network Rumor Spreading Model: Based on Game Experiments. International Journal of Machine Learning and Cybernetics, 10, 1449-1457.
https://doi.org/10.1007/s13042-018-0826-5
[74]  Liu, Y. and Xu, S. (2016) Detecting Rumors through Modeling Information Propagation Networks in a Social Media Environment. IEEE Transactions on Computational Social Systems, 3, 46-62.
https://doi.org/10.1109/tcss.2016.2612980
[75]  Peng, X., Wu, J., Liu, R. and Xu, K. (2024) Rumor Detection on Social Media with Temporal Propagation Structure Optimization. arXiv: 2412.08316.
[76]  Leão, J.C., Brandão, M.A., Vaz de Melo, P.O.S. and Laender, A.H.F. (2018) Who Is Really in My Social Circle? Mining Social Relationships to Improve Detection of Real Communities. Journal of Internet Services and Applications, 9, Article No. 20.
https://doi.org/10.1186/s13174-018-0091-6
[77]  Wang, M., Zuo, W. and Wang, Y. (2016) An Improved Density Peaks-Based Clustering Method for Social Circle Discovery in Social Networks. Neurocomputing, 179, 219-227.
https://doi.org/10.1016/j.neucom.2015.11.091
[78]  Verbeke, W. and Wuyts, S. (2006) Moving in Social Circles—Social Circle Membership and Performance Implications. Journal of Organizational Behavior, 28, 357-379.
https://doi.org/10.1002/job.423
[79]  Iswed, I.M., F., Y. and S., A. (2019) Boosted Constrained K-Means Algorithm for Social Networks Circles Analysis. International Journal of Advanced Computer Science and Applications, 10, 419-423.
https://doi.org/10.14569/ijacsa.2019.0100758
[80]  Wang, C., Hao, C. and Guan, X. (2020) Hierarchical and Overlapping Social Circle Identification in Ego Networks Based on Link Clustering. Neurocomputing, 381, 322-335.
https://doi.org/10.1016/j.neucom.2019.11.080
[81]  Zhang, X., Ma, Z., Zhang, Z., Sun, Q. and Yan, J. (2018) A Review of Community Detection Algorithms Based on Modularity Optimization. Journal of Physics: Conference Series, 1069, Article ID: 012123.
https://doi.org/10.1088/1742-6596/1069/1/012123
[82]  Ren, S., Zhang, S. and Wu, T. (2020) An Improved Spectral Clustering Community Detection Algorithm Based on Probability Matrix. Discrete Dynamics in Nature and Society, 2020, Article ID: 4540302.
https://doi.org/10.1155/2020/4540302
[83]  Horne, B.D., Nørregaard, J. and Adalı, S. (2019) Different Spirals of Sameness: A Study of Content Sharing in Mainstream and Alternative Media. Proceedings of the International AAAI Conference on Web and Social Media, 13, 257-266.
https://doi.org/10.1609/icwsm.v13i01.3227
[84]  Wang, L. and Guo, Y. (2019) An Evolution Model of Rumor Spreading Based on WeChat Social Circle. Journal of Information Processing Systems, 15, 1179-1191.
[85]  Palsetia, D., Patwary, M.M.A., Agrawal, A. and Choudhary, A. (2014) Excavating Social Circles via User Interests. Social Network Analysis and Mining, 4, Article No. 170.
https://doi.org/10.1007/s13278-014-0170-z
[86]  Li, J., Li, R., Ni, S. and Kao, H. (2024) EPRD: Exploiting Prior Knowledge for Evidence-Providing Automatic Rumor Detection. Neurocomputing, 563, Article ID: 126935.
https://doi.org/10.1016/j.neucom.2023.126935
[87]  Sattarov, O. and Choi, J. (2024) Detection of Rumors and Their Sources in Social Networks: A Comprehensive Survey. IEEE Transactions on Big Data.
https://doi.org/10.1109/tbdata.2024.3522801

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133