Currently, social platforms provide places for people not only to gather information but also to generate and propagate rumors. Consequently, rumor detection has become a major global task for mining fake information from social networks. Although social circles have the capacity to describe users’ behavior preferences and to impact the scope and spreading speed of rumors, numerous studies have ignored them when designing rumor prediction models. To address this oversight, we conducted a technical investigation and comparison of state-of-the-art procedures for detecting rumors, focusing on the role of data mining in social circles. This survey will assist researchers in determining the most effective techniques and appropriate future research directions.
References
[1]
Allcott, H. and Gentzkow, M. (2017) Social Media and Fake News in the 2016 Election. JournalofEconomicPerspectives, 31, 211-236. https://doi.org/10.1257/jep.31.2.211
[2]
Oyza, I. and M. Edwin, A. (2015) Effectiveness of Social Media Networks as a Strategic Tool for Organizational Marketing Management. TheJournalofInternetBankingandCommerce, 1. https://doi.org/10.4172/1204-5357.s2-006
[3]
Alkhodair, S.A., Ding, S.H.H., Fung, B.C.M. and Liu, J. (2020) Detecting Breaking News Rumors of Emerging Topics in Social Media. InformationProcessing&Management, 57, Article ID: 102018. https://doi.org/10.1016/j.ipm.2019.02.016
[4]
Pathak, A.R., Mahajan, A., Singh, K., Patil, A. and Nair, A. (2020) Analysis of Techniques for Rumor Detection in Social Media. ProcediaComputerScience, 167, 2286-2296. https://doi.org/10.1016/j.procs.2020.03.281
[5]
Qin, Y., Dominik, W. and Tang, C. (2018) Predicting Future Rumours. ChineseJournalofElectronics, 27, 514-520. https://doi.org/10.1049/cje.2018.03.008
[6]
Zheng, P., Huang, Z., Dou, Y. and Yan, Y. (2023) Rumor Detection on Social Media through Mining the Social Circles with High Homogeneity. InformationSciences, 642, Article ID: 119083. https://doi.org/10.1016/j.ins.2023.119083
[7]
Mengist, W., Soromessa, T. and Legese, G. (2020) Method for Conducting Systematic Literature Review and Meta-Analysis for Environmental Science Research. MethodsX, 7, Article ID: 100777. https://doi.org/10.1016/j.mex.2019.100777
[8]
Miller, D.E. (1992) “Snakes in the Greens” and Rumor in the Innercity. TheSocialScienceJournal, 29, 381-393. https://doi.org/10.1016/0362-3319(92)90002-y
[9]
Rosnow, R.L. (1976) Rumor and Gossip: The Social Psychology of Hearsay. Elsevier.
[10]
Bock, P.G. (1964) A Theory of Rumor Transmission. Public Opinion Quarterly, 28, 687-690. https://doi.org/10.1086/267293
[11]
Kapferer, J.N. (1990) Rumors: Uses, Interpretations, and Images. Routledge.
[12]
DiFonzo, N. and Bordia, P. (2007) Rumor, Gossip and Urban Legends. Diogenes, 54, 19-35. https://doi.org/10.1177/0392192107073433
[13]
Zubiaga, M.L.A. and Procter, K.B.R.N. (2015) Towards Detecting Rumours in Social Media. ProceedingsoftheAAAIWorkshop, Austin, 25-30 January 2015, 35-41.
[14]
Liu, X.F., Burton-Jones, A., Liu, D.B.J. and Xu, A. (2014) Rumors on Social MEDIA in Disasters: Extending Transmission to Retransmission. Proceeding of the 19th Pacific Asia Conference on Information Systems. http://aisel.aisnet.org/pacis2014/49
[15]
Ahsan, M., Kumari, M. and Sharma, T.P. (2019) Rumors Detection, Verification and Controlling Mechanisms in Online Social Networks: A Survey. OnlineSocialNetworksandMedia, 14, Article ID: 100050. https://doi.org/10.1016/j.osnem.2019.100050
[16]
Alpaydin, E. (2020) Introduction to Machine Learning. The MIT Press.
[17]
Jordan, M.I. and Mitchell, T.M. (2015) Machine Learning: Trends, Perspectives, and Prospects. Science, 349, 255-260. https://doi.org/10.1126/science.aaa8415
[18]
Gongane, V.U., Munot, M.V. and Anuse, A. (2022) Machine Learning Approaches for Rumor Detection on Social Media Platforms: A Comprehensive Survey. In: Gupta, D., Sambyo, K., Prasad, M. and Agarwal, S., Eds., Advanced Machine Intelligence and Signal Processing, Springer, 649-663. https://doi.org/10.1007/978-981-19-0840-8_50
[19]
Doerr, B., Fouz, M. and Friedrich, T. (2012) Why Rumors Spread So Quickly in Social Networks. CommunicationsoftheACM, 55, 70-75. https://doi.org/10.1145/2184319.2184338
[20]
Castillo, C., Mendoza, M. and Poblete, B. (2011) Information Credibility on Twitter. Proceedings of the 20th international conference on World Wide Web, Hyderabad, 28 March-1 April 2011, 675-684. https://doi.org/10.1145/1963405.1963500
[21]
Liu, Y., Xu, S. and Tourassi, G. (2015) Detecting Rumors through Modeling Information Propagation Networks in a Social Media Environment. In: Agarwal, N., Xu, K. and Osgood, N., Eds., Social Computing, Behavioral-Cultural Modeling, and Prediction, Springer, 121-130. https://doi.org/10.1007/978-3-319-16268-3_13
[22]
Esteban-Bravo, M., Jiménez-Rubido, L.D.L.M. and Vidal-Sanz, J.M. (2024) Predicting the Virality of Fake News at the Early Stage of Dissemination. ExpertSystemswithApplications, 248, Article ID: 123390. https://doi.org/10.1016/j.eswa.2024.123390
[23]
Bertsimas, D. and King, A. (2017) Logistic Regression: From Art to Science. StatisticalScience, 32, 367-384. https://doi.org/10.1214/16-sts602
[24]
Zhang, Z., Zhang, Z. and Li, H. (2015) Predictors of the Authenticity of Internet Health Rumours. HealthInformation&LibrariesJournal, 32, 195-205. https://doi.org/10.1111/hir.12115
[25]
Mu, Y., Niu, P., Bontcheva, K. and Aletras, N. (2024) Predicting and Analyzing the Popularity of False Rumors in Weibo. ExpertSystemswithApplications, 243, Article ID: 122791. https://doi.org/10.1016/j.eswa.2023.122791
[26]
Noble, W.S. (2006) What Is a Support Vector Machine? NatureBiotechnology, 24, 1565-1567. https://doi.org/10.1038/nbt1206-1565
[27]
Fernández-Delgado, E.C.M., Barro, D.A.S. and Fernández-Delgado, A. (2014) Do We Need Hundreds of Classifiers to Solve Real World Classification Problems? Journal of Machine Learning Research, 15, 3133-3181.
[28]
Wang, S., Li, Z., Wang, Y. and Zhang, Q. (2019) Machine Learning Methods to Predict Social Media Disaster Rumor Refuters. InternationalJournalofEnvironmentalResearchandPublicHealth, 16, Article 1452. https://doi.org/10.3390/ijerph16081452
[29]
Chen, T. and Guestrin, C. (2016) XGBoost: A Scalable Tree Boosting System. Proceedingsofthe 22ndACMSIGKDDInternationalConferenceonKnowledgeDiscoveryandDataMining, San Francisco, 13-17 August 2016, 785-794. https://doi.org/10.1145/2939672.2939785
[30]
Gumaei, A., Al-Rakhami, M.S., Hassan, M.M., De Albuquerque, V.H.C. and Camacho, D. (2022) An Effective Approach for Rumor Detection of Arabic Tweets Using Extreme Gradient Boosting Method. ACMTransactionsonAsianandLow-ResourceLanguageInformationProcessing, 21, 1-16. https://doi.org/10.1145/3461697
[31]
Li, Z., Zhang, Q., Wang, Y. and Wang, S. (2020) Social Media Rumor Refuter Feature Analysis and Crowd Identification Based on XGBoost and NLP. AppliedSciences, 10, Article 4711. https://doi.org/10.3390/app10144711
[32]
Dey, A. (2016) Machine Learning Algorithms: A Review. International Journal of Computer Science and Information Technology, 7, 1174-1179.
[33]
Takahashi, T. and Igata, N. (2012) Rumor Detection on Twitter. The 6thInternationalConferenceonSoftComputingandIntelligentSystems, andthe 13thInternationalSymposiumonAdvancedIntelligenceSystems, Kobe, 20-24 November 2012, 452-457. https://doi.org/10.1109/scis-isis.2012.6505254
[34]
Timbers, T., Campbell, T. and Lee, M. (2022) Data Science. Chapman and Hall/CRC. https://doi.org/10.1201/9781003080978
[35]
Chang, C., Zhang, Y., Szabo, C. and Sheng, Q.Z. (2016) Extreme User and Political Rumor Detection on Twitter. In: Li, J., Li, X., Wang, S., Li, J. and Sheng, Q., Eds., Advanced Data Mining and Applications, Springer, 751-763. https://doi.org/10.1007/978-3-319-49586-6_54
[36]
Jain, S., Sharma, V. and Kaushal, R. (2016) Towards Automated Real-Time Detection of Misinformation on Twitter. 2016 InternationalConferenceonAdvancesinComputing, CommunicationsandInformatics (ICACCI), Jaipur, 21-24 September 2016, 2015-2020. https://doi.org/10.1109/icacci.2016.7732347
[37]
Gao, Y., Wang, X., He, X., Feng, H. and Zhang, Y. (2022) Rumor Detection with Self-Supervised Learning on Texts and Social Graph. FrontiersofComputerScience, 17, Article No. 174611. https://doi.org/10.1007/s11704-022-1531-9
[38]
Zeng, H. and Cui, X. (2022) SimCLRT: A Simple Framework for Contrastive Learning of Rumor Tracking. EngineeringApplicationsofArtificialIntelligence, 110, Article ID: 104757. https://doi.org/10.1016/j.engappai.2022.104757
[39]
Nithya, K., Krishnamoorthi, M., Easwaramoorthy, S.V., C R, D., Yoo, S. and Cho, J. (2024) Hybrid Approach of Deep Feature Extraction Using BERT-OPCNN & FIAC with Customized Bi-LSTM for Rumor Text Classification. AlexandriaEngineeringJournal, 90, 65-75. https://doi.org/10.1016/j.aej.2024.01.056
[40]
Alawadh, H.M., Alabrah, A., Meraj, T. and Rauf, H.T. (2023) Attention-Enriched Mini-Bert Fake News Analyzer Using the Arabic Language. FutureInternet, 15, Article 44. https://doi.org/10.3390/fi15020044
[41]
Pathak, A.R., Pandey, M. and Rautaray, S. (2018) Application of Deep Learning for Object Detection. ProcediaComputerScience, 132, 1706-1717. https://doi.org/10.1016/j.procs.2018.05.144
[42]
Tan, L., Wang, G., Jia, F. and Lian, X. (2022) Research Status of Deep Learning Methods for Rumor Detection. MultimediaToolsandApplications, 82, 2941-2982. https://doi.org/10.1007/s11042-022-12800-8
[43]
Cao, J., Guo, J., Li, X., Jin, Z., Guo, H. and Li, J. (2018) Automatic Rumor Detection on Microblogs: A Survey. arXiv: 1807.03505.
[44]
Ma, J., Gao, W. and Wong, K. (2018) Rumor Detection on Twitter with Tree-Structured Recursive Neural Networks. Proceedingsofthe 56thAnnualMeetingoftheAssociationforComputationalLinguistics (Volume 1: LongPapers), Melbourne, 15-20 July 2018. 1980-1989. https://doi.org/10.18653/v1/p18-1184
[45]
Ruchansky, N., Seo, S. and Liu, Y. (2017) CSI: A Hybrid Deep Model for Fake News Detection. Proceedings of the 2017 ACM on Conference on Information and KnowledgeManagement, Singapore, 6-10 November 2017, 797-806. https://doi.org/10.1145/3132847.3132877
[46]
Yu, F., Liu, Q., Wu, S., Wang, L. and Tan, T. (2017) A Convolutional Approach for Misinformation Identification. ProceedingsoftheTwenty-SixthInternationalJointConferenceonArtificialIntelligence, Melbourne, 19-25 August 2017, 3901-3907. https://doi.org/10.24963/ijcai.2017/545
Chen, J., Zhang, W., Ma, H. and Yang, S. (2023) Rumor Detection in Social Media Based on Multi-Hop Graphs and Differential Time Series. Mathematics, 11, Article 3461. https://doi.org/10.3390/math11163461
[49]
Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., etal. (2020) Rumor Detection on Social Media with Bi-Directional Graph Convolutional Networks. ProceedingsoftheAAAIConferenceonArtificialIntelligence, 34, 549-556. https://doi.org/10.1609/aaai.v34i01.5393
[50]
Wu, Z., Pi, D., Chen, J., Xie, M. and Cao, J. (2020) Rumor Detection Based on Propagation Graph Neural Network with Attention Mechanism. ExpertSystemswithApplications, 158, Article ID: 113595. https://doi.org/10.1016/j.eswa.2020.113595
[51]
Zhang, X. and Gao, W. (2024) Predicting Viral Rumors and Vulnerable Users with Graph-Based Neural Multi-Task Learning for Infodemic Surveillance. InformationProcessing&Management, 61, Article ID: 103520. https://doi.org/10.1016/j.ipm.2023.103520
[52]
Yan, Y., Wang, Y. and Zheng, P. (2023) A Graph-Based Pivotal Semantic Mining Framework for Rumor Detection. EngineeringApplicationsofArtificialIntelligence, 118, Article ID: 105613. https://doi.org/10.1016/j.engappai.2022.105613
[53]
Hashimoto, T., Kuboyama, T. and Shirota, Y. (2011) Rumor Analysis Framework in Social Media. TENCON 2011—2011 IEEERegion 10 Conference, Bali, 21-24 November 2011, 133-137. https://doi.org/10.1109/tencon.2011.6129078
[54]
Cai, G., Wu, H. and Lv, R. (2014) Rumors Detection in Chinese via Crowd Responses. 2014 IEEE/ACMInternationalConferenceonAdvancesinSocialNetworksAnalysisandMining (ASONAM 2014), Beijing, 17-20 August 2014, 912-917. https://doi.org/10.1109/asonam.2014.6921694
[55]
Ajao, O., Bhowmik, D. and Zargari, S. (2018) Fake News Identification on Twitter with Hybrid CNN and RNN Models. Proceedingsofthe 9thInternationalConferenceonSocialMediaandSociety, Copenhagen, 18-20 July 2018, 226-230. https://doi.org/10.1145/3217804.3217917
[56]
Nguyen, T.T., Ren, Z., Nguyen, T.T., Jo, J., Nguyen, Q.V.H. and Yin, H. (2024) Portable Graph-Based Rumour Detection against Multi-Modal Heterophily. Knowledge-BasedSystems, 284, Article ID: 111310. https://doi.org/10.1016/j.knosys.2023.111310
[57]
Yan, Y., Wang, Y. and Zheng, P. (2023) Rumor Detection on Social Networks Focusing on Endogenous Psychological Motivation. Neurocomputing, 552, Article ID: 126548. https://doi.org/10.1016/j.neucom.2023.126548
[58]
Hu, X., Xiong, X., Wu, Y., Shi, M., Wei, P. and Ma, C. (2023) A Hybrid Clustered SFLA-PSO Algorithm for Optimizing the Timely and Real-Time Rumor Refutations in Online Social Networks. Expert Systems with Applications, 212, Article ID: 118638. https://doi.org/10.1016/j.eswa.2022.118638
[59]
Chen, W., Zhang, Y., Yeo, C.K., Lau, C.T. and Lee, B.S. (2018) Unsupervised Rumor Detection Based on Users’ Behaviors Using Neural Networks. PatternRecognitionLetters, 105, 226-233. https://doi.org/10.1016/j.patrec.2017.10.014
[60]
Askarizadeh, M., Tork Ladani, B. and Manshaei, M.H. (2019) An Evolutionary Game Model for Analysis of Rumor Propagation and Control in Social Networks. PhysicaA: StatisticalMechanicsanditsApplications, 523, 21-39. https://doi.org/10.1016/j.physa.2019.01.147
[61]
Myilsamy, K., Kumar, M.S. and Kumar, A.S. (2024) Optimal Control of a Rumor Propagation Model in Online Social Network by Considering Influential Nodes. ResultsinControlandOptimization, 14, Article ID: 100339. https://doi.org/10.1016/j.rico.2023.100339
[62]
Khawaja, F.R., Zhang, Z., Memon, Y. and Ullah, A. (2024) Exploring Community Detection Methods and Their Diverse Applications in Complex Networks: A Comprehensive Review. SocialNetworkAnalysisandMining, 14, Article No. 115. https://doi.org/10.1007/s13278-024-01274-1
[63]
Anggrainingsih, R., Hassan, G.M. and Datta, A. (2024) Transformer-Based Models for Combating Rumours on Microblogging Platforms: A Review. ArtificialIntelligenceReview, 57, Article No. 212. https://doi.org/10.1007/s10462-024-10837-9
[64]
Chang, Q., Li, X. and Duan, Z. (2024) A Novel Approach for Rumor Detection in Social Platforms: Memory-Augmented Transformer with Graph Convolutional Networks. Knowledge-BasedSystems, 292, Article ID: 111625. https://doi.org/10.1016/j.knosys.2024.111625
[65]
Lv, J., Wang, X. and Shao, C. (2022) TMIF: Transformer-Based Multi-Modal Interactive Fusion for Automatic Rumor Detection. MultimediaSystems, 29, 2979-2989. https://doi.org/10.1007/s00530-022-00916-8
[66]
Aichner, T., Grünfelder, M., Maurer, O. and Jegeni, D. (2021) Twenty-five Years of Social Media: A Review of Social Media Applications and Definitions from 1994 to 2019. Cyberpsychology, Behavior, andSocialNetworking, 24, 215-222. https://doi.org/10.1089/cyber.2020.0134
[67]
Garton, L., Haythornthwaite, C. and Wellman, B. (2006) Studying Online Social Networks. JournalofComputer-MediatedCommunication, 3, JCMC313. https://doi.org/10.1111/j.1083-6101.1997.tb00062.x
[68]
Stieglitz, S., Mirbabaie, M., Ross, B. and Neuberger, C. (2018) Social Media Analytics—Challenges in Topic Discovery, Data Collection, and Data Preparation. InternationalJournalofInformationManagement, 39, 156-168. https://doi.org/10.1016/j.ijinfomgt.2017.12.002
[69]
Albesher, A.S. and Alhussain, T. (2021) Evaluating and Comparing the Usability of Privacy in WhatsAPP, Twitter, and Snapchat. InternationalJournalofAdvancedComputerScienceandApplications, 12, 251-259. https://doi.org/10.14569/ijacsa.2021.0120829
[70]
Li, Q., Zhang, Q., Si, L. and Liu, Y. (2019) Rumor Detection on Social Media: Datasets, Methods and Opportunities. ProceedingsoftheSecondWorkshoponNaturalLanguageProcessingforInternetFreedom: Censorship, Disinformation, andPropaganda, Hong Kong, November 2019, 66-75. https://doi.org/10.18653/v1/d19-5008
[71]
Buchanan, T. (2020) Why Do People Spread False Information Online? The Effects of Message and Viewer Characteristics on Self-Reported Likelihood of Sharing Social Media Disinformation. PLOSONE, 15, e0239666. https://doi.org/10.1371/journal.pone.0239666
[72]
Mu, Y., Bontcheva, K. and Aletras, N. (2023) It’s about Time: Rethinking Evaluation on Rumor Detection Benchmarks Using Chronological Splits. FindingsoftheAssociationforComputationalLinguistics: EACL 2023, Dubrovnik, 2-6 May 2023, 736-743. https://doi.org/10.18653/v1/2023.findings-eacl.55
[73]
Liu, F. and Li, M. (2018) A Game Theory-Based Network Rumor Spreading Model: Based on Game Experiments. InternationalJournalofMachineLearningandCybernetics, 10, 1449-1457. https://doi.org/10.1007/s13042-018-0826-5
[74]
Liu, Y. and Xu, S. (2016) Detecting Rumors through Modeling Information Propagation Networks in a Social Media Environment. IEEETransactionsonComputationalSocialSystems, 3, 46-62. https://doi.org/10.1109/tcss.2016.2612980
[75]
Peng, X., Wu, J., Liu, R. and Xu, K. (2024) Rumor Detection on Social Media with Temporal Propagation Structure Optimization. arXiv: 2412.08316.
[76]
Leão, J.C., Brandão, M.A., Vaz de Melo, P.O.S. and Laender, A.H.F. (2018) Who Is Really in My Social Circle? Mining Social Relationships to Improve Detection of Real Communities. JournalofInternetServicesandApplications, 9, Article No. 20. https://doi.org/10.1186/s13174-018-0091-6
[77]
Wang, M., Zuo, W. and Wang, Y. (2016) An Improved Density Peaks-Based Clustering Method for Social Circle Discovery in Social Networks. Neurocomputing, 179, 219-227. https://doi.org/10.1016/j.neucom.2015.11.091
[78]
Verbeke, W. and Wuyts, S. (2006) Moving in Social Circles—Social Circle Membership and Performance Implications. JournalofOrganizationalBehavior, 28, 357-379. https://doi.org/10.1002/job.423
[79]
Iswed, I.M., F., Y. and S., A. (2019) Boosted Constrained K-Means Algorithm for Social Networks Circles Analysis. InternationalJournalofAdvancedComputerScienceandApplications, 10, 419-423. https://doi.org/10.14569/ijacsa.2019.0100758
[80]
Wang, C., Hao, C. and Guan, X. (2020) Hierarchical and Overlapping Social Circle Identification in Ego Networks Based on Link Clustering. Neurocomputing, 381, 322-335. https://doi.org/10.1016/j.neucom.2019.11.080
[81]
Zhang, X., Ma, Z., Zhang, Z., Sun, Q. and Yan, J. (2018) A Review of Community Detection Algorithms Based on Modularity Optimization. JournalofPhysics: ConferenceSeries, 1069, Article ID: 012123. https://doi.org/10.1088/1742-6596/1069/1/012123
[82]
Ren, S., Zhang, S. and Wu, T. (2020) An Improved Spectral Clustering Community Detection Algorithm Based on Probability Matrix. DiscreteDynamicsinNatureandSociety, 2020, Article ID: 4540302. https://doi.org/10.1155/2020/4540302
[83]
Horne, B.D., Nørregaard, J. and Adalı, S. (2019) Different Spirals of Sameness: A Study of Content Sharing in Mainstream and Alternative Media. ProceedingsoftheInternationalAAAIConferenceonWebandSocialMedia, 13, 257-266. https://doi.org/10.1609/icwsm.v13i01.3227
[84]
Wang, L. and Guo, Y. (2019) An Evolution Model of Rumor Spreading Based on WeChat Social Circle. Journal of Information Processing Systems, 15, 1179-1191.
[85]
Palsetia, D., Patwary, M.M.A., Agrawal, A. and Choudhary, A. (2014) Excavating Social Circles via User Interests. SocialNetworkAnalysisandMining, 4, Article No. 170. https://doi.org/10.1007/s13278-014-0170-z
[86]
Li, J., Li, R., Ni, S. and Kao, H. (2024) EPRD: Exploiting Prior Knowledge for Evidence-Providing Automatic Rumor Detection. Neurocomputing, 563, Article ID: 126935. https://doi.org/10.1016/j.neucom.2023.126935
[87]
Sattarov, O. and Choi, J. (2024) Detection of Rumors and Their Sources in Social Networks: A Comprehensive Survey. IEEETransactionsonBigData. https://doi.org/10.1109/tbdata.2024.3522801