全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Combined Effects of Magnetic Field and Nanoparticles on Rotating Engine-Oil Flow Using a New Local Thermal Non-Equilibrium Formulation

DOI: 10.4236/ojfd.2025.152005, PP. 64-86

Keywords: Engine-Oil, LTNE Formulation, Thermal Instability, Chaos

Full-Text   Cite this paper   Add to My Lib

Abstract:

Engine oil is a liquid used in a wide range of applications, as it is an essential lubricant, but it also cools, washes and helps prolong the performance of industrial machinery, vehicle engines and aircraft combustion treatment. This paper deals with the (alumina-tantalum)/engine oil hybrid nano-liquid flow in a porous medium subjected to rotational and Lorenz forces. We have used the Darcy-Bénard convection model for the momentum equation and a new local thermal non-equilibrium formulation for heat transport. Linear stability theory and non-linear stability theory based on the minimal double Fourier series representation are used to study the appearance of stationary and chaotic convection in the hybrid nano-liquid. The analytical expression of the stationary thermal Rayleigh-Darcy number has been found to be a function of the parameters and physicochemical properties of the nano-liquid. In addition, a robust 6-dimensional nonlinear system was determined for the study of chaotic convection. The effects of dimensionless parameters and nanofragments were analyzed graphically. The added value of this work lies in stabilizing and controlling the onset of thermal instability and chaotic convection in engine oil by adding alumina-tantalum nanofragments and applying a magnetic field and/or a rotational force.

References

[1]  Zada, L., Ullah, I., Alqahtani, A.M., Nawaz, R., Khan, H. and Alam, K. (2024) Enhancing Energy Efficiency and Heat Transfer Performance of Engine Oil Flow through Hybrid Nanoparticles in Convergent/Divergent Channel. Results in Engineering, 22, Article 102027.
https://doi.org/10.1016/j.rineng.2024.102027
[2]  Ahmad, S., Ali, K., Nisar, K.S., Faridi, A.A., Khan, N., Jamshed, W., et al. (2021) Features of Cu and TiO2 in the Flow of Engine Oil Subject to Thermal Jump Conditions. Scientific Reports, 11, Article No. 19592.
https://doi.org/10.1038/s41598-021-99045-x
[3]  Wang, F., Sohail, M., Nazir, U., El-Zahar, E.R., Singh, M., Singh, A., et al. (2023) Applications of Triadic Hybridized-Cross Nanomaterials Suspended in Engine Oil Using Quadratic and Linear Convection with Magnetic Dipole. Case Studies in Thermal Engineering, 44, Article 102873.
https://doi.org/10.1016/j.csite.2023.102873
[4]  Afzal, S., Qayyum, M., Akgül, A. and Hassan, A.M. (2023) Heat Transfer Enhancement in Engine Oil Based Hybrid Nanofluid through Combustive Engines: An Entropy Optimization Approach. Case Studies in Thermal Engineering, 52, Article 103803.
https://doi.org/10.1016/j.csite.2023.103803
[5]  Ayed, S.K., Živković, P., Tomić, M., Dobrnjac, M., Brankovi, J. and Ilić, G. (2018) Experimental Study Rayleigh-Bénard Convection in a Rectangular Motor Oil Tank. Annals of the Faculty of Engineering Hunedoara, 16, 113-116.
[6]  Živković, P., Tomic, M., Ayed, S.K., Barz, C. and Sever, D. (2023) Experimental and Numerical Investigation of Rayleigh-Bénard Convection in Rectangular Cavity with Motor Oil. Thermal Science, 27, 216-216.
https://doi.org/10.2298/TSCI230607216Z
[7]  Tayebi, T. and Chamkha, A.J. (2021) Analysis of the Effects of Local Thermal Non-Equilibrium (LTNE) on Thermo-Natural Convection in an Elliptical Annular Space Separated by a Nanofluid-Saturated Porous Sleeve. International Communications in Heat and Mass Transfer, 129, Article 105725.
https://doi.org/10.1016/j.icheatmasstransfer.2021.105725
[8]  Katto, Y. and Masuoka, T. (1967) Criterion for Onset of Convection in a Saturated Porous Medium. International Journal of Heat & Mass Transfer, 10, 297-309.
https://doi.org/10.1016/0017-9310(67)90147-0
[9]  Morrison, H.L., Rogers, F.T. and Horton, C.W. (1949) Convection Currents in Porous Media: II. Observation of Conditions at Onset of Convection. Journal of Applied Physics, 20, 1027-1029.
https://doi.org/10.1063/1.1698267
[10]  Horton, C.W. and Rogers, F.T. (1945) Convection Currents in a Porous Medium. Journal of Applied Physics, 16, 367-370.
https://doi.org/10.1063/1.1707601
[11]  Straughan, B. (2001) A Sharp Nonlinear Stability Threshold in Rotating Porous Convection. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 457, 87-93.
https://doi.org/10.1098/rspa.2000.0657
[12]  Masuoka, T., Rudraiah, N. and Siddheshwar, P.G. (2003) Nonlinear Convection in Porous Media: A Review. Journal of Porous Media, 6, 1-32.
https://doi.org/10.1615/jpormedia.v6.i1.10
[13]  Vadasz, P. (1999) Local and Global Transitions to Chaos and Hysteresis in a Porous Layer Heated from Below. Transport in Porous Media, 37, 213-245.
https://doi.org/10.1023/a:1006658726309
[14]  Turkyilmazoglu, M. and Siddiqui, A.A. (2023) The Instability Onset of Generalized Isoflux Mean Flow Using Brinkman-Darcy-Bénard Model in a Fluid Saturated Porous Channel. International Journal of Thermal Sciences, 188, Article 108249.
https://doi.org/10.1016/j.ijthermalsci.2023.108249
[15]  Turkyilmazoglu, M. (2023) A Two-Parameter Family of Basic State in Porous Media Leading to Darcy-Bénard Convection. Transport in Porous Media, 148, 519-533.
https://doi.org/10.1007/s11242-023-01957-x
[16]  Straughan, B. and Franchi, F. (1984) Bénard Convection and the Cattaneo Law of Heat Conduction. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 96, 175-178.
https://doi.org/10.1017/s0308210500020564
[17]  Joseph, D.D. and Preziosi, L. (1989) Heat Waves. Reviews of Modern Physics, 61, 41-73.
https://doi.org/10.1103/revmodphys.61.41
[18]  Christov, C.I. and Jordan, P.M. (2005) Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media. Physical Review Letters, 94, Article 154301.
https://doi.org/10.1103/physrevlett.94.154301
[19]  Christov, C.I. (2009) On Frame Indifferent Formulation of the Maxwell-Cattaneo Model of Finite-Speed Heat Conduction. Mechanics Research Communications, 36, 481-486.
https://doi.org/10.1016/j.mechrescom.2008.11.003
[20]  Straughan, B. (2010) Thermal Convection with the Cattaneo-Christov Model. International Journal of Heat and Mass Transfer, 53, 95-98.
https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.001
[21]  Straughan, B. (2010) Porous Convection with Cattaneo Heat Flux. International Journal of Heat and Mass Transfer, 53, 2808-2812.
https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.017
[22]  Straughan, B. (2013) Porous Convection with Local Thermal Non-Equilibrium Temperatures and with Cattaneo Effects in the Solid. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 469, Article 20130187.
https://doi.org/10.1098/rspa.2013.0187
[23]  Dehghan, M., Jamal-Abad, M.T. and Rashidi, S. (2014) Analytical Interpretation of the Local Thermal Non-Equilibrium Condition of Porous Media Imbedded in Tube Heat Exchangers. Energy Conversion and Management, 85, 264-271.
https://doi.org/10.1016/j.enconman.2014.05.074
[24]  Shi, W., Wang, Q., Klepikova, M. and Zhan, H. (2024) New Criteria to Estimate Local Thermal Nonequilibrium Conditions for Heat Transport in Porous Aquifers. Water Resources Research, 60, WR037382.
https://doi.org/10.1029/2024wr037382
[25]  Al-Sumaily, G.F., Al Ezzi, A., Dhahad, H.A., Thompson, M.C. and Yusaf, T. (2021) Legitimacy of the Local Thermal Equilibrium Hypothesis in Porous Media: A Comprehensive Review. Energies, 14, Article 8114.
https://doi.org/10.3390/en14238114
[26]  Prasannakumara, B.C. (2021) Assessment of the Local Thermal Non-Equilibrium Condition for Nanofluid Flow through Porous Media: A Comparative Analysis. Indian Journal of Physics, 96, 2475-2483.
https://doi.org/10.1007/s12648-021-02216-9
[27]  Agarwal, S. and Bhadauria, B.S. (2015) Thermal Instability of a Nanofluid Layer under Local Thermal Non-Equilibrium. Nano Convergence, 2, Article No. 6.
https://doi.org/10.1186/s40580-014-0037-z
[28]  Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., et al. (2017) Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments. International Journal of Heat and Mass Transfer, 107, 778-791.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074
[29]  Siddheshwar, P.G., Kanchana, C. and Laroze, D. (2021) A Study of Darcy-Bénard Regular and Chaotic Convection Using a New Local Thermal Non-Equilibrium Formulation. Physics of Fluids, 33, Article 044107.
https://doi.org/10.1063/5.0046358
[30]  Dèdèwanou, S.J., Monwanou, A.V., Koukpémèdji, A.A., Hinvi, A.L., Miwadinou, C.H. and Chabi Orou, J.B. (2022) Thermal Convective Instabilities and Chaos in a Rotating Hybrid Nanofluid Layer with Cattaneo-Christov Heat Flux Model. Complexity, 2022, Article ID: 9084394.
https://doi.org/10.1155/2022/9084394
[31]  Dèdèwanou, S.J., Hinvi, A.L., Miwadinou, H.C., Monwanou, A.V. and Orou, J.B.C. (2021) Chaotic Convection in a Horizontal Cavity Filled with (Alumina-Copper)/Water Hybrid Nanofluid Heated from Below in Presence of Magnetic Field. Brazilian Journal of Physics, 51, 1079-1095.
https://doi.org/10.1007/s13538-021-00929-0
[32]  Cimpean, D.S., Sheremet, M.A. and Pop, I. (2020) Mixed Convection of Hybrid Nanofluid in a Porous Trapezoidal Chamber. International Communications in Heat and Mass Transfer, 116, Article 104627.
https://doi.org/10.1016/j.icheatmasstransfer.2020.104627
[33]  Manjunatha, N., Reddy, M.G., Aloqaily, A., Aljohani, S., Reddy, A.R., Ali, F., et al. (2025) Radiation Effects on Rotating System Free Convective Nanofluid Unsteady Flow with Heat Source and Magnetic Field. Partial Differential Equations in Applied Mathematics, 13, Article 101083.
https://doi.org/10.1016/j.padiff.2025.101083
[34]  Umavathi, J.C. and Bég, O.A. (2020) Modeling the Onset of Thermosolutal Convective Instability in a Non-Newtonian Nanofluid-Saturated Porous Medium Layer. Chinese Journal of Physics, 68, 147-167.
https://doi.org/10.1016/j.cjph.2020.09.014
[35]  Zheng, L. and Zhang, X. (2017) Numerical Methods. In: Zheng, L. and Zhang, X., Eds., Modeling and Analysis of Modern Fluid Problems, Elsevier, 361-455.
https://doi.org/10.1016/b978-0-12-811753-8.00008-6
[36]  Houeto, J.G., Tokpohozin, B.N., Miwadinou, C.H., Koukpemedji, A.A. and Monwanou, A.V. (2025) Chaotic and Coexistence Attractors of Classical Complex Exotic Oscillator with Position-Dependent Mass. International Journal of Physics, 13, 1-10.
https://doi.org/10.12691/ijp-13-1-1
[37]  Shilpa, B., Chohan, J.S., Beemkumar, N., Kulshreshta, A., Ghodhbani, R., Othman, N.A., et al. (2025) A Novel Machine Learning Approach for Numerical Simulation on the Hybrid Nanofluid Flow Past a Converging/Diverging Channel: Properties of Tantalum and Alumina Nanoparticles. Partial Differential Equations in Applied Mathematics, 13, Article 101063.
https://doi.org/10.1016/j.padiff.2024.101063

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133