Engine oil is a liquid used in a wide range of applications, as it is an essential lubricant, but it also cools, washes and helps prolong the performance of industrial machinery, vehicle engines and aircraft combustion treatment. This paper deals with the (alumina-tantalum)/engine oil hybrid nano-liquid flow in a porous medium subjected to rotational and Lorenz forces. We have used the Darcy-Bénard convection model for the momentum equation and a new local thermal non-equilibrium formulation for heat transport. Linear stability theory and non-linear stability theory based on the minimal double Fourier series representation are used to study the appearance of stationary and chaotic convection in the hybrid nano-liquid. The analytical expression of the stationary thermal Rayleigh-Darcy number has been found to be a function of the parameters and physicochemical properties of the nano-liquid. In addition, a robust 6-dimensional nonlinear system was determined for the study of chaotic convection. The effects of dimensionless parameters and nanofragments were analyzed graphically. The added value of this work lies in stabilizing and controlling the onset of thermal instability and chaotic convection in engine oil by adding alumina-tantalum nanofragments and applying a magnetic field and/or a rotational force.
References
[1]
Zada, L., Ullah, I., Alqahtani, A.M., Nawaz, R., Khan, H. and Alam, K. (2024) Enhancing Energy Efficiency and Heat Transfer Performance of Engine Oil Flow through Hybrid Nanoparticles in Convergent/Divergent Channel. ResultsinEngineering, 22, Article 102027. https://doi.org/10.1016/j.rineng.2024.102027
[2]
Ahmad, S., Ali, K., Nisar, K.S., Faridi, A.A., Khan, N., Jamshed, W., etal. (2021) Features of Cu and TiO2 in the Flow of Engine Oil Subject to Thermal Jump Conditions. ScientificReports, 11, Article No. 19592. https://doi.org/10.1038/s41598-021-99045-x
[3]
Wang, F., Sohail, M., Nazir, U., El-Zahar, E.R., Singh, M., Singh, A., etal. (2023) Applications of Triadic Hybridized-Cross Nanomaterials Suspended in Engine Oil Using Quadratic and Linear Convection with Magnetic Dipole. CaseStudiesinThermalEngineering, 44, Article 102873. https://doi.org/10.1016/j.csite.2023.102873
[4]
Afzal, S., Qayyum, M., Akgül, A. and Hassan, A.M. (2023) Heat Transfer Enhancement in Engine Oil Based Hybrid Nanofluid through Combustive Engines: An Entropy Optimization Approach. Case Studies in Thermal Engineering, 52, Article 103803. https://doi.org/10.1016/j.csite.2023.103803
[5]
Ayed, S.K., Živković, P., Tomić, M., Dobrnjac, M., Brankovi, J. and Ilić, G. (2018) Experimental Study Rayleigh-Bénard Convection in a Rectangular Motor Oil Tank. AnnalsoftheFacultyofEngineeringHunedoara, 16, 113-116.
[6]
Živković, P., Tomic, M., Ayed, S.K., Barz, C. and Sever, D. (2023) Experimental and Numerical Investigation of Rayleigh-Bénard Convection in Rectangular Cavity with Motor Oil. ThermalScience, 27, 216-216. https://doi.org/10.2298/TSCI230607216Z
[7]
Tayebi, T. and Chamkha, A.J. (2021) Analysis of the Effects of Local Thermal Non-Equilibrium (LTNE) on Thermo-Natural Convection in an Elliptical Annular Space Separated by a Nanofluid-Saturated Porous Sleeve. InternationalCommunicationsinHeatandMassTransfer, 129, Article 105725. https://doi.org/10.1016/j.icheatmasstransfer.2021.105725
[8]
Katto, Y. and Masuoka, T. (1967) Criterion for Onset of Convection in a Saturated Porous Medium. InternationalJournalofHeat&MassTransfer, 10, 297-309. https://doi.org/10.1016/0017-9310(67)90147-0
[9]
Morrison, H.L., Rogers, F.T. and Horton, C.W. (1949) Convection Currents in Porous Media: II. Observation of Conditions at Onset of Convection. JournalofAppliedPhysics, 20, 1027-1029. https://doi.org/10.1063/1.1698267
[10]
Horton, C.W. and Rogers, F.T. (1945) Convection Currents in a Porous Medium. JournalofAppliedPhysics, 16, 367-370. https://doi.org/10.1063/1.1707601
[11]
Straughan, B. (2001) A Sharp Nonlinear Stability Threshold in Rotating Porous Convection. ProceedingsoftheRoyalSocietyofLondon.SeriesA:Mathematical, PhysicalandEngineeringSciences, 457, 87-93. https://doi.org/10.1098/rspa.2000.0657
[12]
Masuoka, T., Rudraiah, N. and Siddheshwar, P.G. (2003) Nonlinear Convection in Porous Media: A Review. JournalofPorousMedia, 6, 1-32. https://doi.org/10.1615/jpormedia.v6.i1.10
[13]
Vadasz, P. (1999) Local and Global Transitions to Chaos and Hysteresis in a Porous Layer Heated from Below. TransportinPorousMedia, 37, 213-245. https://doi.org/10.1023/a:1006658726309
[14]
Turkyilmazoglu, M. and Siddiqui, A.A. (2023) The Instability Onset of Generalized Isoflux Mean Flow Using Brinkman-Darcy-Bénard Model in a Fluid Saturated Porous Channel. InternationalJournalofThermalSciences, 188, Article 108249. https://doi.org/10.1016/j.ijthermalsci.2023.108249
[15]
Turkyilmazoglu, M. (2023) A Two-Parameter Family of Basic State in Porous Media Leading to Darcy-Bénard Convection. TransportinPorousMedia, 148, 519-533. https://doi.org/10.1007/s11242-023-01957-x
[16]
Straughan, B. and Franchi, F. (1984) Bénard Convection and the Cattaneo Law of Heat Conduction. ProceedingsoftheRoyalSocietyofEdinburgh:SectionAMathematics, 96, 175-178. https://doi.org/10.1017/s0308210500020564
[17]
Joseph, D.D. and Preziosi, L. (1989) Heat Waves. ReviewsofModernPhysics, 61, 41-73. https://doi.org/10.1103/revmodphys.61.41
[18]
Christov, C.I. and Jordan, P.M. (2005) Heat Conduction Paradox Involving Second-Sound Propagation in Moving Media. PhysicalReviewLetters, 94, Article 154301. https://doi.org/10.1103/physrevlett.94.154301
[19]
Christov, C.I. (2009) On Frame Indifferent Formulation of the Maxwell-Cattaneo Model of Finite-Speed Heat Conduction. MechanicsResearchCommunications, 36, 481-486. https://doi.org/10.1016/j.mechrescom.2008.11.003
[20]
Straughan, B. (2010) Thermal Convection with the Cattaneo-Christov Model. InternationalJournalofHeatandMassTransfer, 53, 95-98. https://doi.org/10.1016/j.ijheatmasstransfer.2009.10.001
[21]
Straughan, B. (2010) Porous Convection with Cattaneo Heat Flux. InternationalJournalofHeatandMassTransfer, 53, 2808-2812. https://doi.org/10.1016/j.ijheatmasstransfer.2010.02.017
[22]
Straughan, B. (2013) Porous Convection with Local Thermal Non-Equilibrium Temperatures and with Cattaneo Effects in the Solid. ProceedingsoftheRoyalSocietyA:Mathematical, PhysicalandEngineeringSciences, 469, Article 20130187. https://doi.org/10.1098/rspa.2013.0187
[23]
Dehghan, M., Jamal-Abad, M.T. and Rashidi, S. (2014) Analytical Interpretation of the Local Thermal Non-Equilibrium Condition of Porous Media Imbedded in Tube Heat Exchangers. EnergyConversionandManagement, 85, 264-271. https://doi.org/10.1016/j.enconman.2014.05.074
[24]
Shi, W., Wang, Q., Klepikova, M. and Zhan, H. (2024) New Criteria to Estimate Local Thermal Nonequilibrium Conditions for Heat Transport in Porous Aquifers. WaterResourcesResearch, 60, WR037382. https://doi.org/10.1029/2024wr037382
[25]
Al-Sumaily, G.F., Al Ezzi, A., Dhahad, H.A., Thompson, M.C. and Yusaf, T. (2021) Legitimacy of the Local Thermal Equilibrium Hypothesis in Porous Media: A Comprehensive Review. Energies, 14, Article 8114. https://doi.org/10.3390/en14238114
[26]
Prasannakumara, B.C. (2021) Assessment of the Local Thermal Non-Equilibrium Condition for Nanofluid Flow through Porous Media: A Comparative Analysis. IndianJournalofPhysics, 96, 2475-2483. https://doi.org/10.1007/s12648-021-02216-9
[27]
Agarwal, S. and Bhadauria, B.S. (2015) Thermal Instability of a Nanofluid Layer under Local Thermal Non-Equilibrium. NanoConvergence, 2, Article No. 6. https://doi.org/10.1186/s40580-014-0037-z
[28]
Kasaeian, A., Daneshazarian, R., Mahian, O., Kolsi, L., Chamkha, A.J., Wongwises, S., etal. (2017) Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments. InternationalJournalofHeatandMassTransfer, 107, 778-791. https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.074
[29]
Siddheshwar, P.G., Kanchana, C. and Laroze, D. (2021) A Study of Darcy-Bénard Regular and Chaotic Convection Using a New Local Thermal Non-Equilibrium Formulation. PhysicsofFluids, 33, Article 044107. https://doi.org/10.1063/5.0046358
[30]
Dèdèwanou, S.J., Monwanou, A.V., Koukpémèdji, A.A., Hinvi, A.L., Miwadinou, C.H. and Chabi Orou, J.B. (2022) Thermal Convective Instabilities and Chaos in a Rotating Hybrid Nanofluid Layer with Cattaneo-Christov Heat Flux Model. Complexity, 2022, Article ID: 9084394. https://doi.org/10.1155/2022/9084394
[31]
Dèdèwanou, S.J., Hinvi, A.L., Miwadinou, H.C., Monwanou, A.V. and Orou, J.B.C. (2021) Chaotic Convection in a Horizontal Cavity Filled with (Alumina-Copper)/Water Hybrid Nanofluid Heated from Below in Presence of Magnetic Field. BrazilianJournalofPhysics, 51, 1079-1095. https://doi.org/10.1007/s13538-021-00929-0
[32]
Cimpean, D.S., Sheremet, M.A. and Pop, I. (2020) Mixed Convection of Hybrid Nanofluid in a Porous Trapezoidal Chamber. InternationalCommunicationsinHeatandMassTransfer, 116, Article 104627. https://doi.org/10.1016/j.icheatmasstransfer.2020.104627
[33]
Manjunatha, N., Reddy, M.G., Aloqaily, A., Aljohani, S., Reddy, A.R., Ali, F., etal. (2025) Radiation Effects on Rotating System Free Convective Nanofluid Unsteady Flow with Heat Source and Magnetic Field. PartialDifferentialEquationsinAppliedMathematics, 13, Article 101083. https://doi.org/10.1016/j.padiff.2025.101083
[34]
Umavathi, J.C. and Bég, O.A. (2020) Modeling the Onset of Thermosolutal Convective Instability in a Non-Newtonian Nanofluid-Saturated Porous Medium Layer. ChineseJournalofPhysics, 68, 147-167. https://doi.org/10.1016/j.cjph.2020.09.014
[35]
Zheng, L. and Zhang, X. (2017) Numerical Methods. In: Zheng, L. and Zhang, X., Eds., ModelingandAnalysisofModernFluidProblems, Elsevier, 361-455. https://doi.org/10.1016/b978-0-12-811753-8.00008-6
[36]
Houeto, J.G., Tokpohozin, B.N., Miwadinou, C.H., Koukpemedji, A.A. and Monwanou, A.V. (2025) Chaotic and Coexistence Attractors of Classical Complex Exotic Oscillator with Position-Dependent Mass. InternationalJournalofPhysics, 13, 1-10. https://doi.org/10.12691/ijp-13-1-1
[37]
Shilpa, B., Chohan, J.S., Beemkumar, N., Kulshreshta, A., Ghodhbani, R., Othman, N.A., etal. (2025) A Novel Machine Learning Approach for Numerical Simulation on the Hybrid Nanofluid Flow Past a Converging/Diverging Channel: Properties of Tantalum and Alumina Nanoparticles. PartialDifferentialEquationsinAppliedMathematics, 13, Article 101063. https://doi.org/10.1016/j.padiff.2024.101063