Context: One of the key objectives of the WHO’s “Global Technical Strategy against Malaria 2016-2030” is to eliminate malaria in at least 30 countries by 2030. However, it has to be said that malaria is progressing dangerously in some of the 21 priority countries, including Burkina Faso, which complicates the achievement of the elimination objectives. Objective: The aim of this study was to assess documented good practices that are conducive to malaria intervention and elimination. Method: We searched Medline, Cochrane, Hinari, Global index Medicus and Google scholar for relevant studies published between 2016 and 2023, and produced a narrative synthesis to organize and categorize the various interventions. Data quality was assessed using the Dixon-Woods M technique and risk of bias using the Cochrane’s ROBINS-I assessment tool. Result: A sample of 41 documents was selected to meet our assessment criteria. The 7 good practices conducive to malaria elimination are the use of long-lasting insecticide-treated nets (LLINs), combined interventions, mass drug administration (MDA), chemoprevention of seasonal malaria (CPS), intermittent preventive treatment of malaria (IPT), rapid diagnostic testing, and antimalarial treatments. Conclusion: This review has identified good practices conducive to malaria elimination of malaria. However, other innovations such as gene drives and vaccines are interventions which, when combined with these good practices, could enhance the efforts of health programmes in our African countries.
References
[1]
WHO (2025) Rapport 2024 sur le paludisme dans le monde: Principaux messages 2024. https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/world-malaria-report-2024-global-briefing-kit-fre.pdf?sfvrsn=affbbec7_6&download=true
[2]
Palu, S. (2024) Fonds Mondial Evaluation des obstacles liés aux communautés, aux droits humains et au genre dans la lutte contre le paludisme à l’aide de Malaria Matchbox Tool au Burkina Faso 2024.
[3]
WHO (2024) Rapport 2024 sur le paludisme dans le monde: Données & tendances régionales 2024. https://cdn.who.int/media/docs/default-source/malaria/world-malaria-reports/world-malaria-report-2024-regional-briefing-kit-fre.pdf?sfvrsn=bceac4ae_9&download=true
[4]
Bhatt, S. and Weiss, D.J. (2015) L’effet de la lutte antipaludique sur Plasmodium falciparum en Afrique entre 2000 et 2015.
[5]
Cairns, M.E., Sagara, I., Zongo, I., Kuepfer, I., Thera, I., Nikiema, F., et al. (2020) Evaluation of Seasonal Malaria Chemoprevention in Two Areas of Intense Seasonal Malaria Transmission: Secondary Analysis of a Household-Randomised, Placebo-Controlled Trial in Houndé District, Burkina Faso and Bougouni District, Mali. PLOS Medicine, 17, e1003214. https://doi.org/10.1371/journal.pmed.1003214
[6]
Cohen, J.M., Smith, D.L., Cotter, C., Ward, A., Yamey, G., Sabot, O.J., et al. (2012) Malaria Resurgence: A Systematic Review and Assessment of Its Causes. Malaria Journal, 11, Article No. 122. https://doi.org/10.1186/1475-2875-11-122
[7]
Hutton, B., Salanti, G., Caldwell, D.M., Chaimani, A., Schmid, C.H., Cameron, C., et al. (2015) The PRISMA Extension Statement for Reporting of Systematic Reviews Incorporating Network Meta-Analyses of Health Care Interventions: Checklist and Explanations. Annals of Internal Medicine, 162, 777-784. https://doi.org/10.7326/m14-2385
[8]
Saaiq, M. and Ashraf, B. (2017) Modifying “Pico” Question into “Picos” Model for More Robust and Reproducible Presentation of the Methodology Employed in A Scientific Study. World Journal of Plastic Surgery, 6, 390-392.
[9]
Petticrew, M. and Roberts, H. (2006) Systematic Reviews in the Social Sciences. Wiley. https://doi.org/10.1002/9780470754887
[10]
Dixon-Woods, M., Cavers, D., Agarwal, S., Annandale, E., Arthur, A., Harvey, J., et al. (2006) Conducting a Critical Interpretive Synthesis of the Literature on Access to Healthcare by Vulnerable Groups. BMC Medical Research Methodology, 6, Article No. 35. https://doi.org/10.1186/1471-2288-6-35
[11]
Sterne, J.A., Hernán, M.A., Reeves, B.C., Savović, J., Berkman, N.D., Viswanathan, M., et al. (2016) ROBINS-I: A Tool for Assessing Risk of Bias in Non-Randomised Studies of Interventions. BMJ, 355, i4919. https://doi.org/10.1136/bmj.i4919
[12]
Kabera, M., Mangala, J.N., Soebiyanto, R., Mukarugwiro, B., Munguti, K., Mbituyumuremyi, A., et al. (2023) Impact of Pyrethroid Plus Piperonyl Butoxide Synergist-Treated Nets on Malaria Incidence 24 Months after a National Distribution Campaign in Rwanda. The American Journal of Tropical Medicine and Hygiene, 109, 1356-1362. https://doi.org/10.4269/ajtmh.23-0317
[13]
Kabeya, T.K., Musasa Kasongo, J.C., Matumba, N.B., Tshibangu, D.I., Garcia-Morzon, L.A. and Burgueno, E. (2023) Impact of Mass Distribution of Long-Lasting Insecticide Nets on the Incidence of Malaria in Lomami, Democratic Republic of Congo (DRC): A Study Based on Electronic Health Record Data (2018-2019). Pan African Medical Journal, 45, Article 89. https://doi.org/10.11604/pamj.2023.45.89.33099
[14]
Accrombessi, M., Cook, J., Dangbenon, E., Yovogan, B., Akpovi, H., Sovi, A., et al. (2023) Efficacy of Pyriproxyfen-Pyrethroid Long-Lasting Insecticidal Nets (LLINS) and Chlorfenapyr-Pyrethroid LLINS Compared with Pyrethroid-Only Llins for Malaria Control in Benin: A Cluster-Randomised, Superiority Trial. The Lancet, 401, 435-446. https://doi.org/10.1016/s0140-6736(22)02319-4
[15]
Ngufor, C., Fongnikin, A., Hobbs, N., Gbegbo, M., Kiki, L., Odjo, A., et al. (2020) Indoor Spraying with Chlorfenapyr (A Pyrrole Insecticide) Provides Residual Control of Pyrethroid-Resistant Malaria Vectors in Southern Benin. Malaria Journal, 19, Article No. 249. https://doi.org/10.1186/s12936-020-03325-2
[16]
Kané, F., Keïta, M., Traoré, B., Diawara, S.I., Bane, S., Diarra, S., et al. (2020) Performance of IRS on Malaria Prevalence and Incidence Using Pirimiphos-Methyl in the Context of Pyrethroid Resistance in Koulikoro Region, Mali. Malaria Journal, 19, Article No. 286. https://doi.org/10.1186/s12936-020-03357-8
[17]
Chaumeau, V., Kajeechiwa, L., Kulabkeeree, T., Sawasdichai, S., Haohankhunnatham, W., Inta, A., et al. (2022) Outdoor Residual Spraying for Malaria Vector-Control in Kayin (Karen) State, Myanmar: A Cluster Randomized Controlled Trial. PLOS ONE, 17, e0274320. https://doi.org/10.1371/journal.pone.0274320
[18]
Alhassan, Y., Dwomoh, D., Amuasi, S.A., Nonvignon, J., Bonful, H., Tetteh, M., et al. (2022) Impact of Insecticide-Treated Nets and Indoor Residual Spraying on Self-Reported Malaria Prevalence among Women of Reproductive Age in Ghana: Implication for Malaria Control and Elimination. Malaria Journal, 21, Article No. 120. https://doi.org/10.1186/s12936-022-04136-3
[19]
Echodu, D.C., Yeka, A., Eganyu, T., Odude, W., Bukenya, F., Amoah, B., et al. (2023) Impact of Population Based Indoor Residual Spraying with and without Mass Drug Administration with Dihydroartemisinin-Piperaquine on Malaria Prevalence in a High Transmission Setting: A Quasi-Experimental Controlled before-and-after Trial in Northeastern Uganda. BMC Infectious Diseases, 23, Article No. 72. https://doi.org/10.1186/s12879-023-07991-w
[20]
Hsiang, M.S., Ntuku, H., Roberts, K.W., Dufour, M.K., Whittemore, B., Tambo, M., et al. (2020) Effectiveness of Reactive Focal Mass Drug Administration and Reactive Focal Vector Control to Reduce Malaria Transmission in the Low Malaria-Endemic Setting of Namibia: A Cluster-Randomised Controlled, Open-Label, Two-by-Two Factorial Design Trial. The Lancet, 395, 1361-1373. https://doi.org/10.1016/s0140-6736(20)30470-0
[21]
von Seidlein, L., Hanboonkunupakarn, B., Jittamala, P., Pongsuwan, P., Chotivanich, K., Tarning, J., et al. (2019) Combining Antimalarial Drugs and Vaccine for Malaria Elimination Campaigns: A Randomized Safety and Immunogenicity Trial of RTS,S/AS01 Administered with Dihydroartemisinin, Piperaquine, and Primaquine in Healthy Thai Adult Volunteers. Human Vaccines & Immunotherapeutics, 16, 33-41. https://doi.org/10.1080/21645515.2019.1643675
[22]
Chaccour, C., Zulliger, R., Wagman, J., Casellas, A., Nacima, A., Elobolobo, E., et al. (2021) Incremental Impact on Malaria Incidence Following Indoor Residual Spraying in a Highly Endemic Area with High Standard ITN Access in Mozambique: Results from a Cluster‐Randomized Study. Malaria Journal, 20, Article No. 84. https://doi.org/10.1186/s12936-021-03611-7
[23]
Asale, A., Kussa, D., Girma, M., Mbogo, C. and Mutero, C.M. (2019) Community Based Integrated Vector Management for Malaria Control: Lessons from Three Years’ Experience (2016-2018) in Botor-Tolay District, Southwestern Ethiopia. BMC Public Health, 19, Article No. 1318. https://doi.org/10.1186/s12889-019-7606-3
[24]
McCann, R.S., Kabaghe, A.N., Moraga, P., Gowelo, S., Mburu, M.M., Tizifa, T., et al. (2021) The Effect of Community-Driven Larval Source Management and House Improvement on Malaria Transmission When Added to the Standard Malaria Control Strategies in Malawi: A Cluster-Randomized Controlled Trial. Malaria Journal, 20, Article No. 232. https://doi.org/10.1186/s12936-021-03769-0
[25]
Ampofo, G.D., Ahiakpa, A.K. and Osarfo, J. (2023) Interventions for Malaria Prevention in Pregnancy; Factors Influencing Uptake and Their Effect on Pregnancy Outcomes among Post-Natal Women in a Tertiary Facility in the Volta Region of Ghana. SAGE Open Medicine, 11, 1-11. https://doi.org/10.1177/20503121231199653
[26]
Apinjoh, T.O., Ntui, V.N., Chi, H.F., Moyeh, M.N., Toussi, C.T., Mayaba, J.M., et al. (2022) Intermittent Preventive Treatment with Sulphadoxine-Pyrimethamine (IPTp-SP) Is Associated with Protection against Sub-Microscopic P. Falciparum Infection in Pregnant Women during the Low Transmission Dry Season in Southwestern Cameroon: A Semi-Longitudinal Study. PLOS ONE, 17, e0275370. https://doi.org/10.1371/journal.pone.0275370
[27]
Rubenstein, B.L., Chinkhumba, J., Chilima, E., Kwizombe, C., Malpass, A., Cash, S., et al. (2022) A Cluster Randomized Trial of Delivery of Intermittent Preventive Treatment of Malaria in Pregnancy at the Community Level in Malawi. Malaria Journal, 21, Article No. 195. https://doi.org/10.1186/s12936-022-04216-4
[28]
Wallender, E., Ali, A.M., Hughes, E., Kakuru, A., Jagannathan, P., Muhindo, M.K., et al. (2021) Identifying an Optimal Dihydroartemisinin-Piperaquine Dosing Regimen for Malaria Prevention in Young Ugandan Children. Nature Communications, 12, Article No. 6714. https://doi.org/10.1038/s41467-021-27051-8
[29]
Makenga, G., Baraka, V., Francis, F., Nakato, S., Gesase, S., Mtove, G., et al. (2023) Effectiveness and Safety of Intermittent Preventive Treatment with Dihydroartemisinin-Piperaquine or Artesunate-Amodiaquine for Reducing Malaria and Related Morbidities in Schoolchildren in Tanzania: A Randomised Controlled Trial. The Lancet Global Health, 11, e1277-e1289. https://doi.org/10.1016/s2214-109x(23)00204-8
[30]
Boyce, R.M., Hollingsworth, B.D., Baguma, E., Xu, E., Goel, V., Brown-Marusiak, A., et al. (2021) Dihydroartemisinin-Piperaquine Chemoprevention and Malaria Incidence after Severe Flooding: Evaluation of a Pragmatic Intervention in Rural Uganda. Clinical Infectious Diseases, 74, 2191-2199. https://doi.org/10.1093/cid/ciab781
[31]
Issiaka, D., Barry, A., Traore, T., Diarra, B., Cook, D., Keita, M., et al. (2020) Impact of Seasonal Malaria Chemoprevention on Hospital Admissions and Mortality in Children under 5 Years of Age in Ouelessebougou, Mali. Malaria Journal, 19, Article No. 103. https://doi.org/10.1186/s12936-020-03175-y
[32]
Adjei, M.R., Kubio, C., Buamah, M., Sarfo, A., Suuri, T., Ibrahim, S., et al. (2022) Effectiveness of Seasonal Malaria Chemoprevention in Reducing Under-Five Malaria Morbidity and Mortality in the Savannah Region, Ghana. Ghana Medical Journal, 56, 64-70. https://doi.org/10.4314/gmj.v56i2.2
[33]
Molina-de la Fuente, I., Sagrado Benito, M.J., Lasry, E., Ousley, J., García, L., González, V., et al. (2023) Seasonal Malaria Chemoprevention in a Context of High Presumed Sulfadoxine-Pyrimethamine Resistance: Malaria Morbidity and Molecular Drug Resistance Profiles in South Sudan. Malaria Journal, 22, Article No. 345. https://doi.org/10.1186/s12936-023-04740-x
[34]
Selvaraj, P., Wenger, E.A., Bridenbecker, D., Windbichler, N., Russell, J.R., Gerardin, J., et al. (2020) Vector Genetics, Insecticide Resistance and Gene Drives: An Agent-Based Modeling Approach to Evaluate Malaria Transmission and Elimination. PLOS Computational Biology, 16, e1008121. https://doi.org/10.1371/journal.pcbi.1008121
[35]
Hoermann, A., Habtewold, T., Selvaraj, P., Del Corsano, G., Capriotti, P., Inghilterra, M.G., et al. (2022) Gene Drive Mosquitoes Can Aid Malaria Elimination by Retarding Plasmodium Sporogonic Development. Science Advances, 8, eabo1733. https://doi.org/10.1126/sciadv.abo1733
[36]
Agius, P.A., Cutts, J.C., Han Oo, W., Thi, A., O’Flaherty, K., Zayar Aung, K., et al. (2020) Evaluation of the Effectiveness of Topical Repellent Distributed by Village Health Volunteer Networks against Plasmodium Spp. Infection in Myanmar: A Stepped-Wedge Cluster Randomised Trial. PLOS Medicine, 17, e1003177. https://doi.org/10.1371/journal.pmed.1003177
[37]
Syafruddin, D., Asih, P.B.S., Rozi, I.E., Permana, D.H., Nur Hidayati, A.P., Syahrani, L., et al. (2020) Efficacy of a Spatial Repellent for Control of Malaria in Indonesia: A Cluster-Randomized Controlled Trial. The American Journal of Tropical Medicine and Hygiene, 103, 344-358. https://doi.org/10.4269/ajtmh.19-0554
[38]
Tripura, R., Peto, T.J., Chea, N., Chan, D., Mukaka, M., Sirithiranont, P., et al. (2018) A Controlled Trial of Mass Drug Administration to Interrupt Transmission of Multidrug-Resistant Falciparum Malaria in Cambodian Villages. Clinical Infectious Diseases, 67, 817-826. https://doi.org/10.1093/cid/ciy196
[39]
Vilakati, S., Mngadi, N., Benjamin-Chung, J., Dlamini, N., Dufour, M.K., Whittemore, B., et al. (2021) Effectiveness and Safety of Reactive Focal Mass Drug Administration (rfMDA) Using Dihydroartemisinin-Piperaquine to Reduce Malaria Transmission in the Very Low-Endemic Setting of Eswatini: A Pragmatic Cluster Randomised Controlled Trial. BMJ Global Health, 6, e005021. https://doi.org/10.1136/bmjgh-2021-005021
[40]
Shankar, H., Singh, M.P., Phookan, S., Singh, K. and Mishra, N. (2021) Diagnostic Performance of Rapid Diagnostic Test, Light Microscopy and Polymerase Chain Reaction during Mass Survey Conducted in Low and High Malaria-Endemic Areas from Two North-Eastern States of India. Parasitology Research, 120, 2251-2261. https://doi.org/10.1007/s00436-021-07125-8
[41]
van der Pluijm, R.W., Tripura, R., Hoglund, R.M., Pyae Phyo, A., Lek, D., ul Islam, A., et al. (2020) Triple Artemisinin-Based Combination Therapies versus Artemisinin-Based Combination Therapies for Uncomplicated Plasmodium falciparum Malaria: A Multicentre, Open-Label, Randomised Clinical Trial. The Lancet, 395, 1345-1360. https://doi.org/10.1016/s0140-6736(20)30552-3
[42]
Msellem, M., Morris, U., Soe, A., Abbas, F.B., Ali, A., Barnes, R., et al. (2020) Increased Sensitivity of Plasmodium falciparum to Artesunate/Amodiaquine Despite 14 Years as First-Line Malaria Treatment, Zanzibar. Emerging Infectious Diseases, 26, 1767-1777. https://doi.org/10.3201/eid2608.191547
[43]
Moriarty, L.F., Nkoli, P.M., Likwela, J.L., Mulopo, P.M., Sompwe, E.M., Rika, J.M., et al. (2021) Therapeutic Efficacy of Artemisinin-Based Combination Therapies in Democratic Republic of the Congo and Investigation of Molecular Markers of Antimalarial Resistance. The American Journal of Tropical Medicine and Hygiene, 105, 1067-1075. https://doi.org/10.4269/ajtmh.21-0214
[44]
Zhao, N., Sesay, I., Tu, H., Yamba, F., Lu, L., Guo, Y., et al. (2021) Entomological and Molecular Surveillance of Anopheles Mosquitoes in Freetown, Sierra Leone, 2019. Frontiers in Public Health, 9, Article 649672. https://doi.org/10.3389/fpubh.2021.649672
[45]
Jacob, C.G., Thuy-Nhien, N., Mayxay, M., Maude, R.J., Quang, H.H., Hongvanthong, B., et al. (2021) Genetic Surveillance in the Greater Mekong Subregion and South Asia to Support Malaria Control and Elimination. eLife, 10, e62997. https://doi.org/10.7554/elife.62997
[46]
Wolie, R.Z., Koffi, A.A., Ayuk-Taylor, L., Alou, L.P.A., Sternberg, E.D., N’Nan-Alla, O., et al. (2022) Entomological Indicators of Malaria Transmission Prior to a Cluster-Randomized Controlled Trial of a ‘Lethal House Lure’ Intervention in Central Côte D’ivoire. Malaria Journal, 21, Article No. 188. https://doi.org/10.1186/s12936-022-04196-5
[47]
Green, C., Quigley, P., Kureya, T., Barber, C., Chanda, E., Moyo, B., et al. (2023) Rectal Artesunate for Severe Malaria, Implementation Research, Zambia. Bulletin of the World Health Organization, 101, 371-380A. https://doi.org/10.2471/blt.22.289181
[48]
Abanyie, F., Acharya, S.D., Leavy, I., Bowe, M. and Tan, K.R. (2021) Safety and Effectiveness of Intravenous Artesunate for Treatment of Severe Malaria in the United States—April 2019 through December 2020. Clinical Infectious Diseases, 73, 1965-1972. https://doi.org/10.1093/cid/ciab570
[49]
Samuels, A.M., Ansong, D., Kariuki, S.K., Adjei, S., Bollaerts, A., Ockenhouse, C., et al. (2022) Efficacy of RTS,S/AS01E Malaria Vaccine Administered According to Different Full, Fractional, and Delayed Third or Early Fourth Dose Regimens in Children Aged 5-17 Months in Ghana and Kenya: An Open-Label, Phase 2B, Randomised Controlled Trial. The Lancet Infectious Diseases, 22, 1329-1342. https://doi.org/10.1016/s1473-3099(22)00273-0
[50]
Asante, K.P., Mathanga, D.P., Milligan, P., Akech, S., Oduro, A., Mwapasa, V., et al. (2024) Feasibility, Safety, and Impact of the RTS,S/AS01E Malaria Vaccine When Implemented through National Immunisation Programmes: Evaluation of Cluster-Randomised Introduction of the Vaccine in Ghana, Kenya, and Malawi. The Lancet, 403, 1660-1670. https://doi.org/10.1016/s0140-6736(24)00004-7
[51]
Stanton, M.C., Kalonde, P., Zembere, K., Hoek Spaans, R. and Jones, C.M. (2021) The Application of Drones for Mosquito Larval Habitat Identification in Rural Environments: A Practical Approach for Malaria Control? Malaria Journal, 20, Article No. 244. https://doi.org/10.1186/s12936-021-03759-2
[52]
Datoo, M.S., Natama, M.H., Somé, A., Traoré, O., Rouamba, T., Bellamy, D., et al. (2021) Efficacy of a Low-Dose Candidate Malaria Vaccine, R21 in Adjuvant Matrix-M, with Seasonal Administration to Children in Burkina Faso: A Randomised Controlled Trial. The Lancet, 397, 1809-1818. https://doi.org/10.1016/s0140-6736(21)00943-0
[53]
Kamau, A., Musau, M., Mtanje, G., Mataza, C., Bejon, P. and Snow, R.W. (2022) Long-Lasting Insecticide-Treated Net Use and Malaria Infections on the Kenyan Coast. Transactions of The Royal Society of Tropical Medicine and Hygiene, 116, 966-970. https://doi.org/10.1093/trstmh/trac029
[54]
Barker, T.H., Stone, J.C., Hasanoff, S., Price, C., Kabaghe, A. and Munn, Z. (2023) Effectiveness of Dual Active Ingredient Insecticide-Treated Nets in Preventing Malaria: A Systematic Review and Meta-Analysis. PLOS ONE, 18, e0289469. https://doi.org/10.1371/journal.pone.0289469
[55]
Loha, E., Deressa, W., Gari, T., Balkew, M., Kenea, O., Solomon, T., et al. (2019) Long-Lasting Insecticidal Nets and Indoor Residual Spraying May Not Be Sufficient to Eliminate Malaria in a Low Malaria Incidence Area: Results from a Cluster Randomized Controlled Trial in Ethiopia. Malaria Journal, 18, Article No. 141. https://doi.org/10.1186/s12936-019-2775-1
[56]
Li, G., Zheng, S., Zhang, Z., Hu, Y., Lin, N., Julie, N., et al. (2023) A Campaign of Mass Drug Administration with Artemisinin-Piperaquine to Antimalaria in Trobriand Islands. Preventive Medicine Reports, 32, Article 102154. https://doi.org/10.1016/j.pmedr.2023.102154
[57]
Schneider, Z.D., Shah, M.P., Boily, M.C., Busbee, A.L., Hwang, J., Lindblade, K.A., et al. (2024) Mass Drug Administration to Reduce Malaria Transmission: A Systematic Review and Meta-Analysis. The American Journal of Tropical Medicine and Hygiene, 110, 17-29. https://doi.org/10.4269/ajtmh.22-0766
[58]
Cairns, M., Ceesay, S.J., Sagara, I., Zongo, I., Kessely, H., Gamougam, K., et al. (2021) Effectiveness of Seasonal Malaria Chemoprevention (SMC) Treatments When SMC Is Implemented at Scale: Case-Control Studies in 5 Countries. PLOS Medicine, 18, e1003727. https://doi.org/10.1371/journal.pmed.1003727
[59]
Manga, I.A., Tairou, F., Seck, A., Kouevidjin, E., Sylla, K., Sow, D., et al. (2022) Effectiveness of Seasonal Malaria Chemoprevention Administered in a Mass Campaign in the Kedougou Region of Senegal in 2016: A Case-Control Study. Wellcome Open Research, 7, Article 216. https://doi.org/10.12688/wellcomeopenres.18057.2
[60]
Kamau, A., Musau, M., Mwakio, S., Amadi, D., Nyaguara, A., Bejon, P., et al. (2022) Impact of Intermittent Presumptive Treatment for Malaria in Pregnancy on Hospital Birth Outcomes on the Kenyan Coast. Clinical Infectious Diseases, 76, e875-e883. https://doi.org/10.1093/cid/ciac509
[61]
Maiga, H., Opondo, C., Chico, R.M., Cohee, L.M., Sagara, I., Traore, O.B., et al. (2022) Overall and Gender-Specific Effects of Intermittent Preventive Treatment of Malaria with Artemisinin-Based Combination Therapies among Schoolchildren in Mali: A Three-Group Open Label Randomized Controlled Trial. The American Journal of Tropical Medicine and Hygiene, 107, 796-803. https://doi.org/10.4269/ajtmh.21-1218
[62]
Ruizendaal, E., Schallig, H.D.F.H., Scott, S., Traore-Coulibaly, M., Bradley, J., Lompo, P., et al. (2017) Evaluation of Malaria Screening during Pregnancy with Rapid Diagnostic Tests Performed by Community Health Workers in Burkina Faso. The American Journal of Tropical Medicine and Hygiene, 97, 1190-1197. https://doi.org/10.4269/ajtmh.17-0138
[63]
Shibeshi, W., Baye, A.M., Alemkere, G. and Engidawork, E. (2021) Efficacy and Safety of Artemisinin-Based Combination Therapy for the Treatment of Uncomplicated Malaria in Pregnant Women: A Systematic Review and Meta-Analysis. Therapeutics and Clinical Risk Management, 17, 1353-1370. https://doi.org/10.2147/tcrm.s336771
[64]
Byakika-Kibwika, P., Nyakato, P., Lamorde, M. and Kiragga, A.N. (2018) Assessment of Parasite Clearance Following Treatment of Severe Malaria with Intravenous Artesunate in Ugandan Children Enrolled in a Randomized Controlled Clinical Trial. Malaria Journal, 17, Article No. 400. https://doi.org/10.1186/s12936-018-2552-6
[65]
Gari, T. and Lindtjørn, B. (2024) Insecticide-Treated Bed Nets and Residual Indoor Spraying Reduce Malaria in Areas with Low Transmission: A Reanalysis of the Maltrials Study. Malaria Journal, 23, Article No. 67. https://doi.org/10.1186/s12936-024-04894-2
[66]
Camponovo, F., Ockenhouse, C.F., Lee, C. and Penny, M.A. (2019) Mass Campaigns Combining Antimalarial Drugs and Anti-Infective Vaccines as Seasonal Interventions for Malaria Control, Elimination and Prevention of Resurgence: A Modelling Study. BMC Infectious Diseases, 19, Article No. 920. https://doi.org/10.1186/s12879-019-4467-4
[67]
Zhou, Y., Zhang, W., Tembo, E., Xie, M., Zhang, S., Wang, X., et al. (2022) Effectiveness of Indoor Residual Spraying on Malaria Control: A Systematic Review and Meta-Analysis. Infectious Diseases of Poverty, 11, Article No. 83. https://doi.org/10.1186/s40249-022-01005-8
[68]
Tiedje, K.E., Oduro, A.R., Bangre, O., Amenga-Etego, L., Dadzie, S.K., Appawu, M.A., et al. (2022) Indoor Residual Spraying with a Non-Pyrethroid Insecticide Reduces the Reservoir of Plasmodium falciparum in a High-Transmission Area in Northern Ghana. PLOS Global Public Health, 2, e0000285. https://doi.org/10.1371/journal.pgph.0000285
[69]
Osunkentan, A. and Evans, D. (2015) Chronic Adverse Effects of Long-Term Exposure of Children to Dichlorodiphenyltrichloroethane (DDT) through Indoor Residual Spraying: A Systematic Review. Rural and Remote Health, 15, Article 2889. https://doi.org/10.22605/rrh2889
[70]
Namuganga, J.F., Epstein, A., Nankabirwa, J.I., Mpimbaza, A., Kiggundu, M., Sserwanga, A., et al. (2021) The Impact of Stopping and Starting Indoor Residual Spraying on Malaria Burden in Uganda. Nature Communications, 12, Article No. 2635. https://doi.org/10.1038/s41467-021-22896-5
[71]
Cairns, M., Barry, A., Zongo, I., Sagara, I., Yerbanga, S.R., Diarra, M., et al. (2022) The Duration of Protection against Clinical Malaria Provided by the Combination of Seasonal RTS,S/AS01E Vaccination and Seasonal Malaria Chemoprevention versus Either Intervention Given Alone. BMC Medicine, 20, Article No. 352. https://doi.org/10.1186/s12916-022-02536-5
[72]
Pare Toe, L., Barry, N., Ky, A.D., Kekele, S., Meda, W., Bayala, K., et al. (2021) Small-Scale Release of Non-Gene Drive Mosquitoes in Burkina Faso: From Engagement Implementation to Assessment, a Learning Journey. Malaria Journal, 20, Article No. 395. https://doi.org/10.1186/s12936-021-03929-2
[73]
WHO (2023) Conseils actualisés en matière de vaccination: L’OMS recommande le vaccin R21/Matrix-M pour prévenir le paludisme. https://www.who.int/fr/news/item/02-10-2023-who-recommends-r21-matrix-m-vaccine-for-malaria-prevention-in-updated-advice-on-immunization
[74]
Loeffel, M. and Ross, A. (2022) The Relative Impact of Interventions on Sympatric Plasmodium vivax and Plasmodium falciparum Malaria: A Systematic Review. PLOS Neglected Tropical Diseases, 16, e0010541. https://doi.org/10.1371/journal.pntd.0010541
[75]
Kim, S., Luande, V.N., Rocklöv, J., Carlton, J.M. and Tozan, Y. (2021) A Systematic Review of the Evidence on the Effectiveness and Cost-Effectiveness of Mass Screen-and-Treat Interventions for Malaria Control. The American Journal of Tropical Medicine and Hygiene, 105, 1722-1731. https://doi.org/10.4269/ajtmh.21-0325