全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Advances in Biomarkers for Pancreatic Cancer

DOI: 10.4236/jbm.2025.135019, PP. 241-255

Keywords: Pancreatic Cancer, Biomarkers, Early Diagnosis, Advances

Full-Text   Cite this paper   Add to My Lib

Abstract:

Pancreatic cancer, a highly lethal digestive tract malignancy, has a 5-year survival rate below 10%, primarily due to late-stage diagnosis and limited therapeutic options. Over 80% of patients present with advanced disease, rendering them ineligible for curative surgery and facing a median survival of merely 6 months. Globally, pancreatic cancer ranks fourth in cancer-related mortality, with incidence nearly equaling mortality rates. Despite its clinical urgency, advancements in detection and treatment remain inadequate. Early diagnosis is pivotal to improving outcomes, as timely intervention may significantly prolong survival. This review synthesizes recent progress in identifying biomarkers for pancreatic cancer, emphasizing their potential to enhance early detection, guide therapeutic strategies, and ultimately reduce disease burden. Key findings highlight emerging biomarkers as critical tools for addressing this 21st-century oncological challenge.

References

[1]  Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263.
https://doi.org/10.3322/caac.21834
[2]  Office of the National Health Commission (2022) Guidelines for the Diagnosis and Treatment of Pancreatic Cancer (2022 Edition). Journal of Clinical Hepatobiliary Diseases, 38, 1006-1030.
[3]  Azizian, A., Rühlmann, F., Krause, T., Bernhardt, M., Jo, P., König, A., et al. (2020) CA19-9 for Detecting Recurrence of Pancreatic Cancer. Scientific Reports, 10, Article No. 1332.
https://doi.org/10.1038/s41598-020-57930-x
[4]  Stefanoudakis, D., Frountzas, M., Schizas, D., Michalopoulos, N.V., Drakaki, A. and Toutouzas, K.G. (2024) Significance of TP53, CDKN2A, SMAD4 and KRAS in Pancreatic Cancer. Current Issues in Molecular Biology, 46, 2827-2844.
https://doi.org/10.3390/cimb46040177
[5]  Emran, T.B., Shahriar, A., Mahmud, A.R., Rahman, T., Abir, M.H., Siddiquee, M.F.R., et al. (2022) Multidrug Resistance in Cancer: Understanding Molecular Mechanisms, Immunoprevention and Therapeutic Approaches. Frontiers in Oncology, 12, Article 891652.
https://doi.org/10.3389/fonc.2022.891652
[6]  Narayanan, S., Vicent, S. and Ponz-Sarvisé, M. (2021) PDAC as an Immune Evasive Disease: Can 3D Model Systems Aid to Tackle This Clinical Problem? Frontiers in Cell and Developmental Biology, 9, Article 787249.
https://doi.org/10.3389/fcell.2021.787249
[7]  Xing, H., Wang, J., Wang, Y., Tong, M., Hu, H., Huang, C., et al. (2018) Diagnostic Value of CA 19-9 and Carcinoembryonic Antigen for Pancreatic Cancer: A Meta-Analysis. Gastroenterology Research and Practice, 2018, Article ID: 8704751.
https://doi.org/10.1155/2018/8704751
[8]  Kim, S., Park, B.K., Seo, J.H., Choi, J., Choi, J.W., Lee, C.K., et al. (2020) Carbohydrate Antigen 19-9 Elevation without Evidence of Malignant or Pancreatobiliary Diseases. Scientific Reports, 10, Article No. 8820.
https://doi.org/10.1038/s41598-020-65720-8
[9]  Meng, Q., Shi, S., Liang, C., Xiang, J., Liang, D., Zhang, B., et al. (2017) Diagnostic Accuracy of a CA125-Based Biomarker Panel in Patients with Pancreatic Cancer: A Systematic Review and Meta-analysis. Journal of Cancer, 8, 3615-3622.
https://doi.org/10.7150/jca.18901
[10]  Luo, X., Lin, X., Lin, R., Yang, Y., Wang, C., Fang, H., et al. (2023) The CA125 Level Postoperative Change Rule and Its Prognostic Significance in Patients with Resectable Pancreatic Cancer. BMC Cancer, 23, Article No. 832.
https://doi.org/10.1186/s12885-023-11346-8
[11]  Napoli, N., Kauffmann, E.F., Ginesini, M., Lami, L., Lombardo, C., Vistoli, F., et al. (2023) Ca 125 Is an Independent Prognostic Marker in Resected Pancreatic Cancer of the Head of the Pancreas. Updates in Surgery, 75, 1481-1496.
https://doi.org/10.1007/s13304-023-01587-4
[12]  Striefler, J.K., Riess, H., Lohneis, P., Bischoff, S., Kurreck, A., Modest, D.P., et al. (2021) Mucin-1 Protein Is a Prognostic Marker for Pancreatic Ductal Adenocarcinoma: Results from the CONKO-001 Study. Frontiers in Oncology, 11, Article 670396.
https://doi.org/10.3389/fonc.2021.670396
[13]  Nath, S., Daneshvar, K., Roy, L.D., Grover, P., Kidiyoor, A., Mosley, L., et al. (2013) MUC1 Induces Drug Resistance in Pancreatic Cancer Cells via Upregulation of Multidrug Resistance Genes. Oncogenesis, 2, e51.
https://doi.org/10.1038/oncsis.2013.16
[14]  Wu, G., Li, L., Liu, M., Chen, C., Wang, G., Jiang, Z., et al. (2022) Therapeutic Effect of a MUC1-Specific Monoclonal Antibody-Drug Conjugates against Pancreatic Cancer Model. Cancer Cell International, 22, Article No. 417.
https://doi.org/10.1186/s12935-022-02839-w
[15]  Murthy, D., Attri, K.S., Suresh, V., Rajacharya, G.H., Valenzuela, C.A., Thakur, R., et al. (2024) The MUC1-HIF-1α Signaling Axis Regulates Pancreatic Cancer Pathogenesis through Polyamine Metabolism Remodeling. Proceedings of the National Academy of Sciences of the United States of America, 121, e1979458175.
https://doi.org/10.1073/pnas.2315509121
[16]  Luo, J. (2021) KRAS Mutation in Pancreatic Cancer. Seminars in Oncology, 48, 10-18.
https://doi.org/10.1053/j.seminoncol.2021.02.003
[17]  Yousef, A., Yousef, M., Chowdhury, S., Abdilleh, K., Knafl, M., Edelkamp, P., et al. (2024) Impact of KRAS Mutations and Co-Mutations on Clinical Outcomes in Pancreatic Ductal Adenocarcinoma. npj Precision Oncology, 8, Article No. 27.
https://doi.org/10.1038/s41698-024-00505-0
[18]  Waters, A.M. and Der, C.J. (2017) KRAS: The Critical Driver and Therapeutic Target for Pancreatic Cancer. Cold Spring Harbor Perspectives in Medicine, 8, a031435.
https://doi.org/10.1101/cshperspect.a031435
[19]  Pan, M., Jiang, C., Zhang, Z., Achacoso, N., Alexeeff, S., Solorzano, A.V., et al. (2023) tp53 Gain-Of-Function and Non-Gain-Of-Function Mutations Are Associated with Differential Prognosis in Advanced Pancreatic Ductal Adenocarcinoma. JCO Precision Oncology, 7, e2200570.
https://doi.org/10.1200/po.22.00570
[20]  Gu, Y., Ji, Y., Jiang, H. and Qiu, G. (2020) Clinical Effect of Driver Mutations of KRAS, CDKN2A/P16, Tp53, and SMAD4 in Pancreatic Cancer: A Meta-Analysis. Genetic Testing and Molecular Biomarkers, 24, 777-788.
https://doi.org/10.1089/gtmb.2020.0078
[21]  Rosen, M.N., Goodwin, R.A. and Vickers, M.M. (2021) BRCA Mutated Pancreatic Cancer: A Change Is Coming. World Journal of Gastroenterology, 27, 1943-1958.
https://doi.org/10.3748/wjg.v27.i17.1943
[22]  Limijadi, E.K.S., Muniroh, M., Prajoko, Y.W., Tjandra, K.C. and Respati, D.R.P. (2024) The Role of Germline BRCA1 & BRCA2 Mutations in Familial Pancreatic Cancer: A Systematic Review and Meta-Analysis. PLOS ONE, 19, e0299276.
https://doi.org/10.1371/journal.pone.0299276
[23]  Lai, E., Ziranu, P., Spanu, D., Dubois, M., Pretta, A., Tolu, S., et al. (2021) BRCA-Mutant Pancreatic Ductal Adenocarcinoma. British Journal of Cancer, 125, 1321-1332.
https://doi.org/10.1038/s41416-021-01469-9
[24]  Lomberk, G., Dusetti, N., Iovanna, J. and Urrutia, R. (2019) Emerging Epigenomic Landscapes of Pancreatic Cancer in the Era of Precision Medicine. Nature Communications, 10, Article No. 3875.
https://doi.org/10.1038/s41467-019-11812-7
[25]  Rah, B., Banday, M.A., Bhat, G.R., Shah, O.J., Jeelani, H., Kawoosa, F., et al. (2021) Evaluation of Biomarkers, Genetic Mutations, and Epigenetic Modifications in Early Diagnosis of Pancreatic Cancer. World Journal of Gastroenterology, 27, 6093-6109.
https://doi.org/10.3748/wjg.v27.i36.6093
[26]  Liu, X., Guo, C., Xi, Z., Xu, X., Zhao, Q., Li, L., et al. (2021) Histone Methylation in Pancreatic Cancer and Its Clinical Implications. World Journal of Gastroenterology, 27, 6004-6024.
https://doi.org/10.3748/wjg.v27.i36.6004
[27]  Zhang, Z., Tang, Y., Wang, Y., Xu, J., Yang, X., Liu, M., et al. (2024) SIN3B Loss Heats up Cold Tumor Microenvironment to Boost Immunotherapy in Pancreatic Cancer. Advanced Science, 11, e2402244.
https://doi.org/10.1002/advs.202402244
[28]  Rampioni Vinciguerra, G.L., Segatto, I., Carstens, J.L. and Lovisa, S. (2024) Editorial: Catch Me If You Can: Cellular Plasticity in Tumor Progression and Drug Resistance. Frontiers in Cell and Developmental Biology, 12, Article 1470518.
https://doi.org/10.3389/fcell.2024.1470518
[29]  Xu, Z., Zhang, D., Zhang, Z., Luo, W., Shi, R., Yao, J., et al. (2021) Microrna-505, Suppressed by Oncogenic Long Non-Coding RNA LINC01448, Acts as a Novel Suppressor of Glycolysis and Tumor Progression through Inhibiting HK2 Expression in Pancreatic Cancer. Frontiers in Cell and Developmental Biology, 8, Article 625056.
https://doi.org/10.3389/fcell.2020.625056
[30]  Wang, L., Bi, R., Li, L., Zhou, K. and Yin, H. (2021) LncRNA ANRIL Aggravates the Chemoresistance of Pancreatic Cancer Cells to Gemcitabine by Targeting Inhibition of miR-181a and Targeting HMGB1-Induced Autophagy. Aging, 13, 19272-19281.
https://doi.org/10.18632/aging.203251
[31]  Gong, Y., Gong, D., Liu, S., Gong, X., Xiong, J., Zhang, J., et al. (2024) Deciphering the Role of ncRNAs in Pancreatic Cancer Immune Evasion and Drug Resistance: A New Perspective for Targeted Therapy. Frontiers in Immunology, 15, Article 1480572.
https://doi.org/10.3389/fimmu.2024.1480572
[32]  Balaraman, A.K., Moglad, E., Afzal, M., Babu, M.A., Goyal, K., Roopashree, R., et al. (2025) Liquid Biopsies and Exosomal ncRNA: Transforming Pancreatic Cancer Diagnostics and Therapeutics. Clinica Chimica Acta, 567, Article ID: 120105.
https://doi.org/10.1016/j.cca.2024.120105
[33]  Bravo-Vázquez, L.A., Frías-Reid, N., Ramos-Delgado, A.G., Osorio-Pérez, S.M., Zlotnik-Chávez, H.R., Pathak, S., et al. (2023) MicroRNAs and Long Non-Coding RNAs in Pancreatic Cancer: From Epigenetics to Potential Clinical Applications. Translational Oncology, 27, Article ID: 101579.
https://doi.org/10.1016/j.tranon.2022.101579
[34]  Mayerle, J., Kalthoff, H., Reszka, R., Kamlage, B., Peter, E., Schniewind, B., et al. (2017) Metabolic Biomarker Signature to Differentiate Pancreatic Ductal Adenocarcinoma from Chronic Pancreatitis. Gut, 67, 128-137.
https://doi.org/10.1136/gutjnl-2016-312432
[35]  Cao, Y., Zhao, R., Guo, K., Ren, S., Zhang, Y., Lu, Z., et al. (2022) Potential Metabolite Biomarkers for Early Detection of Stage-I Pancreatic Ductal Adenocarcinoma. Frontiers in Oncology, 11, Article 744667.
https://doi.org/10.3389/fonc.2021.744667
[36]  Zhao, R., Ren, S., Li, C., Guo, K., Lu, Z., Tian, L., et al. (2022) Biomarkers for Pancreatic Cancer Based on Tissue and Serum Metabolomics Analysis in a Multicenter Study. Cancer Medicine, 12, 5158-5171.
https://doi.org/10.1002/cam4.5296
[37]  Liu, Q., Lan, J., Martínez-Jarquín, S., Ge, W. and Zenobi, R. (2024) Screening Metabolic Biomarkers in KRAS Mutated Mouse Acinar and Human Pancreatic Cancer Cells via Single-Cell Mass Spectrometry. Analytical Chemistry, 96, 4918-4924.
https://doi.org/10.1021/acs.analchem.3c05741
[38]  Klatte, D.C.F., Weston, A., Ma, Y., Sledge, H., Bali, A., Bolan, C., et al. (2024) Temporal Trends in Body Composition and Metabolic Markers Prior to Diagnosis of Pancreatic Ductal Adenocarcinoma. Clinical Gastroenterology and Hepatology, 22, 1830-1838.e9.
https://doi.org/10.1016/j.cgh.2024.03.038
[39]  McGuigan, A.J., Coleman, H.G., McCain, R.S., Kelly, P.J., Johnston, D.I., Taylor, M.A., et al. (2021) Immune Cell Infiltrates as Prognostic Biomarkers in Pancreatic Ductal Adenocarcinoma: A Systematic Review and Meta-Analysis. The Journal of Pathology: Clinical Research, 7, 99-112.
https://doi.org/10.1002/cjp2.192
[40]  Digomann, D., Heiduk, M., Reiche, C., Glück, J., Kahlert, C., Mirtschink, P., et al. (2023) Serum Immune Checkpoint Profiling Identifies Soluble CD40 as a Biomarker for Pancreatic Cancer. npj Precision Oncology, 7, Article No. 104.
https://doi.org/10.1038/s41698-023-00459-9
[41]  Su, Y., Wang, F., Lei, Z., Li, J., Ma, M., Yan, Y., et al. (2023) An Integrated Multi-Omics Analysis Identifying Immune Subtypes of Pancreatic Cancer. International Journal of Molecular Sciences, 25, Article 142.
https://doi.org/10.3390/ijms25010142
[42]  Bestari, M.B., Joewono, I.R. and Syam, A.F. (2024) A Quest for Survival: A Review of the Early Biomarkers of Pancreatic Cancer and the Most Effective Approaches at Present. Biomolecules, 14, Article 364.
https://doi.org/10.3390/biom14030364
[43]  Nené, N.R., Ney, A., Nazarenko, T., Blyuss, O., Johnston, H.E., Whitwell, H.J., et al. (2023) Serum Biomarker-Based Early Detection of Pancreatic Ductal Adenocarcinomas with Ensemble Learning. Communications Medicine, 3, Article No. 10.
https://doi.org/10.1038/s43856-023-00237-5
[44]  Amaral, M.J., Oliveira, R.C., Donato, P. and Tralhão, J.G. (2023) Pancreatic Cancer Biomarkers: Oncogenic Mutations, Tissue and Liquid Biopsies, and Radiomics—A Review. Digestive Diseases and Sciences, 68, 2811-2823.
https://doi.org/10.1007/s10620-023-07904-6
[45]  Wu, H., Ou, S., Zhang, H., Huang, R., Yu, S., Zhao, M., et al. (2022) Advances in Biomarkers and Techniques for Pancreatic Cancer Diagnosis. Cancer Cell International, 22, Article No. 220.
https://doi.org/10.1186/s12935-022-02640-9
[46]  Yang, H., Li, W., Ren, L., Yang, Y., Zhang, Y., Ge, B., et al. (2023) Progress on Diagnostic and Prognostic Markers of Pancreatic Cancer. Oncology Research, 31, 83-99.
https://doi.org/10.32604/or.2023.028905
[47]  Yang, Z., Li, H., Hao, J., Mei, H., Qiu, M., Wang, H., et al. (2024) EPYC Functions as a Novel Prognostic Biomarker for Pancreatic Cancer. Scientific Reports, 14, Article No. 719.
https://doi.org/10.1038/s41598-024-51478-w
[48]  Li, W., Li, T., Sun, C., Du, Y., Chen, L., Du, C., et al. (2022) Identification and Prognostic Analysis of Biomarkers to Predict the Progression of Pancreatic Cancer Patients. Molecular Medicine, 28, Article No. 43.
https://doi.org/10.1186/s10020-022-00467-8
[49]  Khomiak, A., Brunner, M., Kordes, M., Lindblad, S., Miksch, R.C., Öhlund, D., et al. (2020) Recent Discoveries of Diagnostic, Prognostic and Predictive Biomarkers for Pancreatic Cancer. Cancers, 12, Article 3234.
https://doi.org/10.3390/cancers12113234
[50]  Brozos-Vázquez, E., Toledano-Fonseca, M., Costa-Fraga, N., García-Ortiz, M.V., Díaz-Lagares, Á., Rodríguez-Ariza, A., et al. (2024) Pancreatic Cancer Biomarkers: A Pathway to Advance in Personalized Treatment Selection. Cancer Treatment Reviews, 125, Article ID: 102719.
https://doi.org/10.1016/j.ctrv.2024.102719
[51]  Merz, V., Mangiameli, D., Zecchetto, C., Quinzii, A., Pietrobono, S., Messina, C., et al. (2022) Predictive Biomarkers for a Personalized Approach in Resectable Pancreatic Cancer. Frontiers in Surgery, 9, Article 866173.
https://doi.org/10.3389/fsurg.2022.866173
[52]  Huang, X., Zhang, G., Tang, T., Gao, X. and Liang, T. (2022) Personalized Pancreatic Cancer Therapy: From the Perspective of mRNA Vaccine. Military Medical Research, 9, Article No. 53.
https://doi.org/10.1186/s40779-022-00416-w
[53]  Shaya, J., Kato, S., Adashek, J.J., Patel, H., Fanta, P.T., Botta, G.P., et al. (2023) Personalized Matched Targeted Therapy in Advanced Pancreatic Cancer: A Pilot Cohort Analysis. npj Genomic Medicine, 8, Article No. 1.
https://doi.org/10.1038/s41525-022-00346-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133