To extract ore from open pit mines, the associated waste material must also be removed. In most mining operations, the amount of waste rock is greater than the amount of ore. Waste from the pits is usually disposed of in piles, which results in environmental impacts, such as alterations in the natural landscape, possible contamination of soil and water, and the generation of dust and particulates. One way to reduce these environmental impacts and achieve a circular economy (CE) is to use waste rock to construct the pavement layers of mine roads. Another possibility would be to move only the amount of waste necessary to release the ore of interest; in addition to reducing costs, this approach would reduce the volume of waste disposed of in piles. In this study, to reduce the movement of this compact waste, a change in the planned slope is proposed, and the compact waste and surplus material in a long-term mining plan are evaluated. The new optimized geometries, which meet the requirements for road pavement material and remain stable, as indicated by 2D geotechnical finite element modeling, were incorporated into the mining plan of Pit A, an iron mining complex in northern Brazil. The new mining plan was further subjected to economic analysis, which revealed the variations in the tonnage of ore and waste rock (mostly fresh mafic), as well as the change in the net present value (NPV), compared with the original mining plan. The results indicated that the change in geometry led to a reduction of 4.42 Mt in fresh mafic movement. This reduction directly impacted the NPV of the mine plan, with an increase of US$6.88 million.
References
[1]
Akbulut, H., & Gürer, C. (2007). Use of Aggregates Produced from Marble Quarry Waste in Asphalt Pavements. Building and Environment, 42, 1921-1930. https://doi.org/10.1016/j.buildenv.2006.03.012
[2]
Antikainen, M., & Valkokari, K. (2016). A Framework for Sustainable Circular Business Model Innovation. Technology Innovation Management Review, 6, 5-12. https://doi.org/10.22215/timreview/1000
[3]
Aragão, G. A. S. (2008). Classificação de pilhas de estérilnamineração de ferro. Dissertação de mestrado, Universidade Federal de Ouro Preto. https://www.repositorio.ufop.br/server/api/core/bitstreams/3351fe58-0b1e-41a4-a4e8-4e620836fd1c/content
[4]
Benarchid, Y., Taha, Y., Argane, R., & Benzaazoua, M. (2018). Application of Quebec Recycling Guidelines to Assess the Use Feasibility of Waste Rocks as Construction Aggregates. Resources Policy, 59, 68-76. https://doi.org/10.1016/j.resourpol.2018.01.004
[5]
Campos, V., & Peroni, R. (2023). Incorporating Value to Waste Rock in the Ultimate Pit Optimization for Haul Road and Mining Pads Construction and Maintenance Purposes. In Applications and Opportunities in Mining Conference (APCOM). Society for Mining, Metallurgy & Exploration (SME).
[6]
Carneiro, J. P. G., & Mendes, M. V. A. (2024). Technical Feasibility Analysis of the Incorporation of Material Previously Classified as Sterile in a Beneficiation Plant. Revista Foco, 17, e4805. https://doi.org/10.54751/revistafoco.v17n4-026
[7]
Castro-Gomes, J. P., Silva, A. M. P., Peralbo, C. R., & Suarez, J. A. D. (2011). Recycled Materials for Technical Artistic Applications Obtained with Tungsten Mine Coarse Wastes. In COST C25, International Conference on Sustainability of Constructions, towards a Better Built Environment. University of Malta.
[8]
Coulomb, C. A. (1776). Essai sur une application des regles de maximis et minimis quelques problemes de statique, relatits a l’architecture. Memoires de Mathematique de l’Academie Royale de Science, 7, 343-387.
[9]
El Machi, A., & Hakkou, R. (2024). Implementation of Circular Economy between Mining and Construction Sectors: A Promising Route to Achieve Sustainable Development Goals. In A. Bahrami (Ed.), Sustainable Structures and Buildings (pp. 51-63). Springer International Publishing. https://doi.org/10.1007/978-3-031-46688-5_4
[10]
Gomes, A. C. F. (2017). Estudo de aproveitamento de rejeito de mineração. Dissertação de Mestrado, Universidade Federal de Minas Gerais. https://repositorio.ufmg.br/bitstream/1843/BUOS-AN9QQC/1/anacl_udiagomes_disserta__ofinal.pdf
[11]
Gontijo, M. D. (2021). Manuseio e aproveitamento de estéreis em mineração. RevistaEngenharia de Interesse Social, 6, 104-116. https://doi.org/10.36704/25256041/reis.v6i8.6005
[12]
Hebhoub, H., Aoun, H., Belachia, M., Houari, H., & Ghorbel, E. (2011). Use of Waste Marble Aggregates in Concrete. Construction and Building Materials, 25, 1167-1171. https://doi.org/10.1016/j.conbuildmat.2010.09.037
[13]
Hoek, E. (2007). Practical Rock Engineering. Evert Hoek Consulting Engineer, Inc.
[14]
Hoek, E., Carranza-Torres, C., & Corkum, B. (2002). Hoek-Brown Failure Criterion-2002 Edition. Proceedings of NARMS-Tac, 1, 267-273.
[15]
ICMM (2017). The “Circular Economy” in Mining and Metals. https://www.icmm.com/en-gb/case-studies/2017/mining-minerals/circular-economy
[16]
Jose, S. A., Calhoun, J., Renteria, O. B., Mercado, P., Nakajima, S., Hope, C. N. et al. (2024). Promoting a Circular Economy in Mining Practices. Sustainability, 16, Article No. 11016. https://doi.org/10.3390/su162411016
[17]
Kaufmann, W. W., & Ault, J. C. (1977). Design of Surface Mine Haulage Roads.
[18]
Kirchherr, J., Reike, D., & Hekkert, M. (2017). Conceptualizing the Circular Economy: An Analysis of 114 Definitions. Resources, Conservation and Recycling, 127, 221-232. https://doi.org/10.1016/j.resconrec.2017.09.005
[19]
Lébre, É., Corder, G., & Golev, A. (2017). The Role of the Mining Industry in a Circular Economy: A Framework for Resource Management at the Mine Site Level. Journal of Industrial Ecology, 21, 662-672. https://doi.org/10.1111/jiec.12596
[20]
MMA—Ministério do Meio Ambiente (2009). Agenda ambientalnaadministraçãopública (5ª ed., revista e atualizada). Ministério do Meio Ambiente. https://www.cuiaba.mt.gov.br/upload/arquivo/cartilha_a3p_36.pdf
[21]
Mohr, O. (1900). Welche Umstande bedingen die Elastizitatsgrenze und den Bruch eines Materials? Zeitschrift des Vereins Deutscher Ingenieure Band, 44, 1524-1530.
[22]
Mun, K. J., Choi, N. W., So, S. Y., & Soh, Y. S. (2007). Influence of Fine Tailings on Polyester Mortar Properties. Construction and Building Materials, 21, 1335-1341. https://doi.org/10.1016/j.conbuildmat.2005.12.021
[23]
Raupp-Pereira, F., Ball, R. J., Rocha, J., Labrincha, J. A., & Allen, G. C. (2008). New Waste Based Clinkers: Belite and Lime Formulations. Cement and Concrete Research, 38, 511-521. https://doi.org/10.1016/j.cemconres.2007.11.008
[24]
Read, J., & Stacey, P. (2009) Guidelines for Open Pit Slope Design. CSIRO Publishing.
[25]
Ritzén, S., & Sandström, G. Ö. (2017). Barriers to the Circular Economy—Integration of Perspectives and Domains. Procedia CIRP, 64, 7-12. https://doi.org/10.1016/j.procir.2017.03.005
[26]
Robertson, A. M. (1987). Mine Waste Disposal: An Update on Geotechnical and Geohydrological Aspects. In D. J. A. VanZyl, J. D. Nelson, S. R. Abt, & T. A. Shepherd (Eds.), Geotechnical and Geohydrological Aspects of Waste Management (pp. 123-130). Taylor & Francis.
[27]
Swan, G., & Sepulveda, R. (2001). Slope Stability at Collahausi. In W. A. Hustrulid, M. K. McCarter, & D. J. A. Van Zyl (Eds.), Slope Stability in Surface Mining (pp. 163-170). SME, Inc.
[28]
Thompson, R. J., Peroni, R. L., & Visser, A. T. (2019). Mining Haul Roads: Theory and Practice. CRC Press/Balkema.
[29]
Yellishetty, M., Karpe, V., Reddy, E. H., Subhash, K. N., & Ranjith, P. G. (2008). Reuse of Iron Ore Mineral Wastes in Civil Engineering Constructions: A Case Study. Resources, Conservation and Recycling, 52, 1283-1289. https://doi.org/10.1016/j.resconrec.2008.07.007
[30]
Young, A., Barreto, M. L., & Chovan, K. (2021). Towards a Circular Economy Approach to Mining Operations: Key Concepts, Drivers and Opportunities. Enviro Integration Strategies Inc./MERG.