全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

The Hybrid Mind in Precision Neurorehabilitation: Integrating AI-Driven Neurotechnologies and Ethical Governance

DOI: 10.4236/wjns.2025.152010, PP. 105-125

Keywords: Hybrid Mind, AI-Driven Neurorehabilitation, Brain-Computer Interfaces (BCIs), Deep Brain Stimulation (DBS), Neuroadaptive Algorithms

Full-Text   Cite this paper   Add to My Lib

Abstract:

Artificial intelligence (AI) and neurotechnologies are redefining neuropsychological rehabilitation, enabling precision-guided, real-time neuromodulation. This review introduces the hybrid mind paradigm—a convergence of biological and artificial cognition—operationalized through AI-enhanced braincomputer interfaces (BCIs), deep brain stimulation (DBS), and adaptive neurofeedback. These technologies integrate closed-loop modulation and neuroadaptive algorithms to optimize neuroplasticity and functional recovery. While AI-driven systems show promise in cognitive and motor domains, translational barriers persist, including algorithmic opacity, neural data governance, and fragmented regulation. We synthesize recent evidence and outline strategic priorities: implementation of explainable AI frameworks, development of non-invasive neuromodulatory alternatives, and global harmonization of ethical standards. As AI and neuroscience converge, the hybrid mind paradigm signals a pivotal shift toward individualized, ethically guided neurorehabilitation.

References

[1]  Caiado, F. and Ukolov, A. (2025) The History, Current State and Future Possibilities of the Non-Invasive Brain Computer Interfaces. Medicine in Novel Technology and Devices, 25, Article 100353.
https://doi.org/10.1016/j.medntd.2025.100353
[2]  Kumar, D., Kumar, P., Pal, S. and Singh, S. (2025) AI-Enhanced Neurophysiological Assessment. In: Bansal, R., Maqableh, T., Shuklaa, G., Rabby, F. and Lathabhavan, R., Eds., Transforming Neuropsychology and Cognitive Psychology with AI and Machine Learning, IGI Global, 33-64.
https://doi.org/10.4018/979-8-3693-9341-3.ch002
[3]  Elashmawi, W.H., Ayman, A., Antoun, M., Mohamed, H., Mohamed, S.E., Amr, H., et al. (2024) A Comprehensive Review on Brain-Computer Interface (BCI)-Based Machine and Deep Learning Algorithms for Stroke Rehabilitation. Applied Sciences, 14, Article 6347.
https://doi.org/10.3390/app14146347
[4]  Sarda, J., Shah, M., Vaghela, R., Vaishnani, D. and Patel, H. (2025) Hand Kinematics and Decoding Hindlimb Kinematics Using Local Field Potentials Using a Deep Neural Network Decoding Framework. In: Subasi, A., Qaisar, S.M., Bhoi, A.K. and Srinivasu, P.N., Eds., Artificial Intelligence Applications for Brain-Computer Interfaces, Elsevier, 63-79.
https://doi.org/10.1016/b978-0-443-33414-6.00004-6
[5]  Onciul, R., Tataru, C., Dumitru, A.V., Crivoi, C., Serban, M., Covache-Busuioc, R., et al. (2025) Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. Journal of Clinical Medicine, 14, Article 550.
https://doi.org/10.3390/jcm14020550
[6]  Medenica, V., Ivanovic, L. and Milosevic, N. (2024) Applicability of Artificial Intelligence in Neuropsychological Rehabilitation of Patients with Brain Injury. Applied Neuropsychology: Adult.
https://doi.org/10.1080/23279095.2024.2364229
[7]  Murthy, Y.S., Bansal, R., Chodisetty, R.S.C.M., Chakravorty, C. and Sai, K.P. (2025) Transforming Minds AI and Machine Learning Applications in Cognitive Neuroscience. In: Bansal, R., Maqableh, T., Shuklaa, G., Rabby, F. and Lathabhavan, R., Eds., Transforming Neuropsychology and Cognitive Psychology with AI and Machine Learning, IGI Global, 107-128.
https://doi.org/10.4018/979-8-3693-9341-3.ch005
[8]  Korade, A.G., Phulbone, M.V., Aedma, A. and Jadhav, A. (2024) Exploring Human Potential: The Integration of Neuroplasticity, Cognitive Enhancement, and Artificial Intelligence in Mental Health and Well-Being. International Journal of Toxicological and Pharmacological Research, 14, 124-134.
[9]  Calderone, A., Latella, D., Bonanno, M., Quartarone, A., Mojdehdehbaher, S., Celesti, A., et al. (2024) Towards Transforming Neurorehabilitation: The Impact of Artificial Intelligence on Diagnosis and Treatment of Neurological Disorders. Biomedicines, 12, Article 2415.
https://doi.org/10.3390/biomedicines12102415
[10]  Soekadar, S., Chandler, J., Ienca, M. and Bublitz, C. (2021) On the Verge of the Hybrid Mind. Morals & Machines, 1, 30-43.
https://doi.org/10.5771/2747-5174-2021-1-30
[11]  Simon, C., Bolton, D.A.E., Kennedy, N.C., Soekadar, S.R. and Ruddy, K.L. (2021) Challenges and Opportunities for the Future of Brain-Computer Interface in Neurorehabilitation. Frontiers in Neuroscience, 15, Article 699428.
https://doi.org/10.3389/fnins.2021.699428
[12]  Mane, R., Wu, Z. and Wang, D. (2022) Poststroke Motor, Cognitive and Speech Rehabilitation with Brain-Computer Interface: A Perspective Review. Stroke and Vascular Neurology, 7, 541-549.
https://doi.org/10.1136/svn-2022-001506
[13]  Yuste, R. (2023) Advocating for Neurodata Privacy and Neurotechnology Regulation. Nature Protocols, 18, 2869-2875.
https://doi.org/10.1038/s41596-023-00873-0
[14]  George, A.S. (2024) Protecting Brain Privacy in the Age of Neurotechnology: Policy Responses and Remaining Challenges. Public Interest Research & Policy, 1, 18-33.
https://doi.org/10.5281/zenodo.13942131
[15]  Eke, D. (2024) Ethics and Governance of Neurotechnology in Africa: Lessons from AI. JMIR Neurotechnology, 3, e56665.
https://doi.org/10.2196/56665
[16]  Van Den Broek, S.R., Bagot, K.L., Arthurson, L., Cadilhac, D.A. and Stolwyk, R.J. (2021) Investigating Clinician Experiences of Teleneuropsychology Service Implementation within Rural Inpatient Rehabilitation Settings: A Mixed Method Approach. Archives of Clinical Neuropsychology, 37, 775-788.
https://doi.org/10.1093/arclin/acab086
[17]  Singh, S. and Germine, L. (2020) Technology Meets Tradition: A Hybrid Model for Implementing Digital Tools in Neuropsychology. International Review of Psychiatry, 33, 382-393.
https://doi.org/10.1080/09540261.2020.1835839
[18]  Mariano, M.A., Tang, K., Kurtz, M. and Kates, W.R. (2016) Examining the Durability of a Hybrid, Remote and Computer‐Based Cognitive Remediation Intervention for Adolescents with 22q11.2 Deletion Syndrome. Early Intervention in Psychiatry, 12, 686-693.
https://doi.org/10.1111/eip.12367
[19]  Mahan, S., Rous, R. and Adlam, A. (2017) Systematic Review of Neuropsychological Rehabilitation for Prospective Memory Deficits as a Consequence of Acquired Brain Injury. Journal of the International Neuropsychological Society, 23, 254-265.
https://doi.org/10.1017/s1355617716001065
[20]  Ho, R.T., Xue, W., See, M.K., Chan, D.Y., Tsang, A.C., Mak, C.H., et al. (2025) Advances in Clinical Brain-Computer Interfaces for Assistive Substitution and Rehabilitation: A Rapid Scoping Review. Surgical Practice, 29, 35-49.
https://doi.org/10.1111/1744-1633.70002
[21]  Drigas, A. and Sideraki, A. (2024) Brain Neuroplasticity Leveraging Virtual Reality and Brain-Computer Interface Technologies. Sensors, 24, Article 5725.
https://doi.org/10.3390/s24175725
[22]  Cruz, M.V., Jamal, S. and Sethuraman, S.C. (2024) A Comprehensive Survey of Brain-Computer Interface Technology in Healthcare: Research Perspectives. Preprints.
https://doi.org/10.20944/preprints202403.0082.v1
[23]  Zhao, C., Ju, F., Sun, W., Jiang, S., Xi, X., Wang, H., et al. (2022) Effects of Training with a Brain-Computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial. Neurology and Therapy, 11, 679-695.
https://doi.org/10.1007/s40120-022-00333-z
[24]  Liu, X., Zhang, W., Li, W., Zhang, S., Lv, P. and Yin, Y. (2023) Effects of Motor Imagery Based Brain-Computer Interface on Upper Limb Function and Attention in Stroke Patients with Hemiplegia: A Randomized Controlled Trial. BMC Neurology, 23, Article No. 136.
https://doi.org/10.1186/s12883-023-03150-5
[25]  Borisova, V.A., Isakova, E.V. and Kotov, S.V. (2023) Potential of a Brain-Computer Interface for Correcting Poststroke Cognitive Impairments. Neuroscience and Behavioral Physiology, 53, 988-993.
https://doi.org/10.1007/s11055-023-01492-8
[26]  Georgiev, D., Georgieva, I., Gong, Z., Nanjappan, V. and Georgiev, G. (2021) Virtual Reality for Neurorehabilitation and Cognitive Enhancement. Brain Sciences, 11, Article 221.
https://doi.org/10.3390/brainsci11020221
[27]  Carelli, L., Solca, F., Faini, A., Meriggi, P., Sangalli, D., Cipresso, P., et al. (2017) Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation. BioMed Research International, 2017, Article ID: 1695290.
https://doi.org/10.1155/2017/1695290
[28]  Huggins, J.E., Krusienski, D., Vansteensel, M.J., Valeriani, D., Thelen, A., Stavisky, S., et al. (2022) Workshops of the Eighth International Brain-Computer Interface Meeting: BCIs: The Next Frontier. Brain-Computer Interfaces, 9, 69-101.
https://doi.org/10.1080/2326263x.2021.2009654
[29]  Awuah, W.A., Ahluwalia, A., Darko, K., Sanker, V., Tan, J.K., Tenkorang, P.O., et al. (2024) Bridging Minds and Machines: The Recent Advances of Brain-Computer Interfaces in Neurological and Neurosurgical Applications. World Neurosurgery, 189, 138-153.
https://doi.org/10.1016/j.wneu.2024.05.104
[30]  Carè, M., Chiappalone, M. and Cota, V.R. (2024) Personalized Strategies of Neurostimulation: From Static Biomarkers to Dynamic Closed-Loop Assessment of Neural Function. Frontiers in Neuroscience, 18, Article 1363128.
https://doi.org/10.3389/fnins.2024.1363128
[31]  Patrick-Krueger, K.M., Burkhart, I. and Contreras-Vidal, J.L. (2024) The State of Clinical Trials of Implantable Brain-Computer Interfaces. Nature Reviews Bioengineering, 3, 50-67.
https://doi.org/10.1038/s44222-024-00239-5
[32]  Camargo, L. F. (2024) Estratégia de uso de inteligência artificial explicável no apoio à reabilitação neuromotora. Ph.D. Thesis, Universidade Estadual Paulista.
https://repositorio.unesp.br/bitstreams/4d999102-7f2b-4ebc-9b81-9961e2b1f065/download
[33]  Voigtlaender, S., Pawelczyk, J., Geiger, M., Vaios, E.J., Karschnia, P., Cudkowicz, M., et al. (2024) Artificial Intelligence in Neurology: Opportunities, Challenges, and Policy Implications. Journal of Neurology, 271, 2258-2273.
https://doi.org/10.1007/s00415-024-12220-8
[34]  Jia, T., Li, C., Mo, L., Qian, C., Li, W., Xu, Q., et al. (2022) Tailoring Brain-Machine Interface Rehabilitation Training Based on Neural Reorganization: Towards Personalized Treatment for Stroke Patients. Cerebral Cortex, 33, 3043-3052.
https://doi.org/10.1093/cercor/bhac259
[35]  Baker, K.B., Plow, E.B., Nagel, S., Rosenfeldt, A.B., Gopalakrishnan, R., Clark, C., et al. (2023) Cerebellar Deep Brain Stimulation for Chronic Post-Stroke Motor Rehabilitation: A Phase I Trial. Nature Medicine, 29, 2366-2374.
https://doi.org/10.1038/s41591-023-02507-0
[36]  Chen, Y., Xu, Z., Liu, T., Li, D., Tian, X., Zheng, R., et al. (2024) Application of Deep Brain Stimulation and Transcranial Magnetic Stimulation in Stroke Neurorestoration: A Review. Journal of Neurorestoratology, 12, Article 100120.
https://doi.org/10.1016/j.jnrt.2024.100120
[37]  Kesikburun, S. (2022) Non-Invasive Brain Stimulation in Rehabilitation. Turkish Journal of Physical Medicine and Rehabilitation, 68, 1-8.
https://doi.org/10.5606/tftrd.2022.10608
[38]  Kumar, J., Patel, T., Sugandh, F., Dev, J., Kumar, U., Adeeb, M., et al. (2023) Innovative Approaches and Therapies to Enhance Neuroplasticity and Promote Recovery in Patients with Neurological Disorders: A Narrative Review. Cureus, 15, e41914.
https://doi.org/10.7759/cureus.41914
[39]  Canesi, M., Lippi, L., Rivaroli, S., Vavassori, D., Trenti, M., Sartorio, F., et al. (2024) Long-Term Impact of Deep Brain Stimulation in Parkinson’s Disease: Does It Affect Rehabilitation Outcomes? Medicina, 60, Article 927.
https://doi.org/10.3390/medicina60060927
[40]  Keci, A., Tani, K. and Xhema, J. (2019) Role of Rehabilitation in Neural Plasticity. Open Access Macedonian Journal of Medical Sciences, 7, 1540-1547.
https://doi.org/10.3889/oamjms.2019.295
[41]  Saway, B.F., Palmer, C., Hughes, C., Triano, M., Suresh, R.E., Gilmore, J., et al. (2024) The Evolution of Neuromodulation for Chronic Stroke: From Neuroplasticity Mechanisms to Brain-Computer Interfaces. Neurotherapeutics, 21, e00337.
https://doi.org/10.1016/j.neurot.2024.e00337
[42]  Cernera, S., Okun, M.S. and Gunduz, A. (2019) A Review of Cognitive Outcomes across Movement Disorder Patients Undergoing Deep Brain Stimulation. Frontiers in Neurology, 10, Article 419.
https://doi.org/10.3389/fneur.2019.00419
[43]  Kabotyanski, K.E., Najera, R.A., Banks, G.P., Sharma, H., Provenza, N.R., Hayden, B.Y., et al. (2024) Cost-Effectiveness and Threshold Analysis of Deep Brain Stimulation Vs. Treatment-as-Usual for Treatment-Resistant Depression. Translational Psychiatry, 14, Article No. 243.
https://doi.org/10.1038/s41398-024-02951-7
[44]  Deng, H., Yue, J.K. and Wang, D.D. (2020) Trends in Safety and Cost of Deep Brain Stimulation for Treatment of Movement Disorders in the United States: 2002-2014. British Journal of Neurosurgery, 35, 57-64.
https://doi.org/10.1080/02688697.2020.1759776
[45]  Giansanti, D. (2025) Advancements in Ocular Neuro-Prosthetics: Bridging Neuroscience and Information and Communication Technology for Vision Restoration. Biology, 14, Article 134.
https://doi.org/10.3390/biology14020134
[46]  Lyu, Y., An, P., Xiao, Y., Zhang, Z., Zhang, H., Katsuragawa, K., et al. (2023) Eggly: Designing Mobile Augmented Reality Neurofeedback Training Games for Children with Autism Spectrum Disorder. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 7, Article No. 67.
https://doi.org/10.1145/3596251
[47]  Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G. and Crotty, M. (2017) Virtual Reality for Stroke Rehabilitation. Cochrane Database of Systematic Reviews, No. 11, CD008349.
https://doi.org/10.1002/14651858.cd008349.pub4
[48]  Pedroli, E., Serino, S., Cipresso, P., Pallavicini, F. and Riva, G. (2015) Assessment and Rehabilitation of Neglect Using Virtual Reality: A Systematic Review. Frontiers in Behavioral Neuroscience, 9, Article 226.
https://doi.org/10.3389/fnbeh.2015.00226
[49]  Baragash, R.S., Aldowah, H. and Ghazal, S. (2022) Virtual and Augmented Reality Applications to Improve Older Adults’ Quality of Life: A Systematic Mapping Review and Future Directions. Digital Health, 8.
https://doi.org/10.1177/20552076221132099
[50]  Enriquez-Geppert, S., Smit, D., Pimenta, M.G. and Arns, M. (2019) Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice. Current Psychiatry Reports, 21, Article No. 46.
https://doi.org/10.1007/s11920-019-1021-4
[51]  Cha, S. (2024) Mobile Application Applied for Cognitive Rehabilitation: A Systematic Review. Life, 14, Article 891.
https://doi.org/10.3390/life14070891
[52]  de Alcântara Uchôa Belfort, R.-E., Lima, M.O., Mendes, A.C., Martins, R.A.B.L., Silva Júnior, H.C., de Sousa Rodrigues, H.E., et al. (2022) Desenvolvimento de jogos sérios para reabilitação neurológica de pacientes. Research, Society and Development, 11, 1-15.
https://doi.org/10.33448/rsd-v11i16.37437
[53]  Mansour, S., Ang, K.K., Nair, K.P.S., Phua, K.S. and Arvaneh, M. (2021) Efficacy of Brain-Computer Interface and the Impact of Its Design Characteristics on Poststroke Upper-Limb Rehabilitation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clinical EEG and Neuroscience, 53, 79-90.
https://doi.org/10.1177/15500594211009065
[54]  Zhao, C., Ju, F., Sun, W., Jiang, S., Xi, X., Wang, H., et al. (2022) Effects of Training with a Brain–computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial. Neurology and Therapy, 11, 679-695.
https://doi.org/10.1007/s40120-022-00333-z
[55]  Mang, J., Xu, Z., Qi, Y. and Zhang, T. (2023) Favoring the Cognitive-Motor Process in the Closed-Loop of BCI Mediated Post Stroke Motor Function Recovery: Challenges and Approaches. Frontiers in Neurorobotics, 17, Article 1271967.
https://doi.org/10.3389/fnbot.2023.1271967
[56]  Arntz, A., Weber, F., Handgraaf, M., Lällä, K., Korniloff, K., Murtonen, K., et al. (2023) Technologies in Home-Based Digital Rehabilitation: Scoping Review. JMIR Rehabilitation and Assistive Technologies, 10, e43615.
https://doi.org/10.2196/43615
[57]  Formica, C., Bonanno, M., Sorbera, C., Quartarone, A., Giambò, F.M., Marra, A., et al. (2024) Smartphone-Based Cognitive Telerehabilitation: A Usability and Feasibility Study Focusing on Mild Cognitive Impairment. Sensors, 24, Article 525.
https://doi.org/10.3390/s24020525
[58]  Goering, S., Klein, E., Specker Sullivan, L., Wexler, A., Agüera y Arcas, B., Bi, G., et al. (2021) Recommendations for Responsible Development and Application of Neurotechnologies. Neuroethics, 14, 365-386.
https://doi.org/10.1007/s12152-021-09468-6
[59]  Ienca, M. and Andorno, R. (2017) Towards New Human Rights in the Age of Neuroscience and Neurotechnology. Life Sciences, Society and Policy, 13, Article No. 5.
https://doi.org/10.1186/s40504-017-0050-1
[60]  Ienca, M. and Ignatiadis, K. (2020) Artificial Intelligence in Clinical Neuroscience: Methodological and Ethical Challenges. AJOB Neuroscience, 11, 77-87.
https://doi.org/10.1080/21507740.2020.1740352
[61]  Rieger, P.F.S.N. (2022) Privacidade mental e liberdade cognitiva: Perspectivas e desdobramentos para novos direitos fundamentais no contexto de desenvolvimento e aplicação de neurotecnologia. Master Thesis, Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa-IDP.
https://repositorio.idp.edu.br/bitstream/123456789/4239/1/DISSERTACAO_%20POLIENE%20FERNANDA%20SOUZA%20NASCIMENTO%20RIEGER%20_%20MESTRADO_2022.pdf
[62]  Kritika, M. (2024) A Comprehensive Study on Navigating Neuroethics in Cyberspace. AI and Ethics, 5, 93-100.
https://doi.org/10.1007/s43681-024-00486-7
[63]  Rastrelli, H. (2024) Beyond Faith, Power, and Pride: An Arms Race of Neurotechnol-ogy and Extremism. Master’s Thesis, Georgetown University.
https://repository.library.georgetown.edu/bitstream/handle/10822/1088830/Rastrelli_georgetown_0076M_16040.pdf?sequence=1
[64]  Aziz, A.Y. (2023) Neurotechnology and the Law: Legal Considerations for Privacy, Autonomy, and Liability. CyberLeninka.
https://cyberleninka.ru/article/n/neurotechnology-and-the-law-legal-considerations-for-privacy-autonomy-and-liability
[65]  Bublitz, C. (2024) Neurotechnologies and Human Rights: Restating and Reaffirming the Multi-Layered Protection of the Person. The International Journal of Human Rights, 28, 782-807.
https://doi.org/10.1080/13642987.2024.2310830
[66]  Chandra, P., Sharma, H. and Sachan, N. (2025) Explainable and Responsible AI in Neuroscience: Cognitive Neurostimulation. In Malviya, R. and Sundram, S., Eds., Explainable and Responsible Artificial Intelligence in Healthcare. Wiley, 27-63.
https://doi.org/10.1002/9781394302444.ch2
[67]  Ienca, M., Valle, G. and Raspopovic, S. (2025) Clinical Trials for Implantable Neural Prostheses: Understanding the Ethical and Technical Requirements. The Lancet Digital Health, 7, e216-e224.
https://doi.org/10.1016/s2589-7500(24)00222-x
[68]  McCullum, T. and Contreras Mancera, L.C. (2025) Neurotechnology Combined with Artificial Intelligence and Neurorights: A Legal Discussion. Revista La Propiedad Inmaterial, 39, 145-183.
https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/revpropin39§ion=8
[69]  Federico, C.A. and Trotsyuk, A.A. (2024) Biomedical Data Science, Artificial Intelligence, and Ethics: Navigating Challenges in the Face of Explosive Growth. Annual Review of Biomedical Data Science, 7, 1-14.
https://doi.org/10.1146/annurev-biodatasci-102623-104553
[70]  Garden, H., Winickoff, D.E. and Frahm, N.M. (2019) Responsible Innovation in Neu-rotechnology Enterprises. OECD Science, Technology and Industry Working Paper Series.
https://doi.org/10.1787/9685e4fd-en
[71]  Tröster, A.I. (2024) Developments in the Prediction of Cognitive Changes Following Deep Brain Stimulation in Persons with Parkinson’s Disease. Expert Review of Neurotherapeutics, 24, 643-659.
https://doi.org/10.1080/14737175.2024.2360121
[72]  Zuk, P., Sanchez, C.E., Kostick-Quenet, K., Muñoz, K.A., Kalwani, L., Lavingia, R., et al. (2022) Researcher Views on Changes in Personality, Mood, and Behavior in Next-Generation Deep Brain Stimulation. AJOB Neuroscience, 14, 287-299.
https://doi.org/10.1080/21507740.2022.2048724
[73]  Merner, A.R., Kostick-Quenet, K., Campbell, T.A., Pham, M.T., Sanchez, C.E., Torgerson, L., et al. (2023) Participant Perceptions of Changes in Psychosocial Domains Following Participation in an Adaptive Deep Brain Stimulation Trial. Brain Stimulation, 16, 990-998.
https://doi.org/10.1016/j.brs.2023.06.007
[74]  Wong, J.K., Mayberg, H.S., Wang, D.D., Richardson, R.M., Halpern, C.H., Krinke, L., et al. (2023) Proceedings of the 10th Annual Deep Brain Stimulation Think Tank: Advances in Cutting Edge Technologies, Artificial Intelligence, Neuromodulation, Neuroethics, Interventional Psychiatry, and Women in Neuromodulation. Frontiers in Human Neuroscience, 16, Article 1084782.
https://doi.org/10.3389/fnhum.2022.1084782
[75]  Cornejo, Y. (2024) Neurorights, Neurotechnologies and Personal Data: Review of the Challenges of Mental Autonomy. Journal of Digital Technologies and Law, 2, 711-728.
https://doi.org/10.21202/jdtl.2024.36
[76]  Ruiz, S., Valera, L., Ramos, P. and Sitaram, R. (2024) Neurorights in the Constitution: From Neurotechnology to Ethics and Politics. Philosophical Transactions of the Royal Society B: Biological Sciences, 379, Article 20230098.
https://doi.org/10.1098/rstb.2023.0098
[77]  Guerrero, F. (2024) Neurorights: A New Legal and Ethical Frontier. Multidisciplinary & Health Education Journal, 6, 979-991.
https://journalmhe.org/ojs3/index.php/jmhe/article/view/128
[78]  Yuste, R., Goering, S., Arcas, B.A.y., Bi, G., Carmena, J.M., Carter, A., et al. (2017) Four Ethical Priorities for Neurotechnologies and AI. Nature, 551, 159-163.
https://doi.org/10.1038/551159a
[79]  Takeuchi, Y. and Berényi, A. (2020) Oscillotherapeutics—Time-Targeted Interventions in Epilepsy and Beyond. Neuroscience Research, 152, 87-107.
https://doi.org/10.1016/j.neures.2020.01.002
[80]  Caston, R.M. (2023) High-Density Intracranial Electrodes to Investigate and Modu-late the Spatiotemporal Signatures of Pain. Doctoral Dissertation, ProQuest Dissertations Publishing.
https://search.proquest.com/openview/551707ce8124e8df00e6d53f6e484d1c/1?pq-origsite=gscholar&cbl=18750&diss=y
[81]  Fomenko, A., Neudorfer, C., Dallapiazza, R.F., Kalia, S.K. and Lozano, A.M. (2018) Low-Intensity Ultrasound Neuromodulation: An Overview of Mechanisms and Emerging Human Applications. Brain Stimulation, 11, 1209-1217.
https://doi.org/10.1016/j.brs.2018.08.013
[82]  Tubbs, A. and Vazquez, E.A. (2024) Engineering and Technological Advancements in Repetitive Transcranial Magnetic Stimulation (rTMS): A Five-Year Review. Brain Sciences, 14, 1092.
https://doi.org/10.3390/brainsci14111092
[83]  Ho, R.T., Xue, W., See, M.K., Chan, D.Y., Tsang, A.C., Mak, C.H., et al. (2025) Advances in Clinical Brain-Computer Interfaces for Assistive Substitution and Rehabilitation: A Rapid Scoping Review. Surgical Practice, 29, 35-49.
https://doi.org/10.1111/1744-1633.70002
[84]  Michałowska, M., Kowalczyk, Ł., Marcinkowska, W. and Malicki, M. (2021) Being Outside the Decision-Loop: The Impact of Deep Brain Stimulation and Brain-Computer Interfaces on Autonomy. Analiza i Egzystencja, 56, 25-52.
https://doi.org/10.18276/aie.2021.56-02
[85]  Gordon, E.C. and Seth, A.K. (2024) Ethical Considerations for the Use of Brain–computer Interfaces for Cognitive Enhancement. PLOS Biology, 22, e3002899.
https://doi.org/10.1371/journal.pbio.3002899
[86]  Lekadir, K., Frangi, A.F., Porras, A.R., Glocker, B., Cintas, C., Langlotz, C.P., et al. (2025) FUTURE-AI: International Consensus Guideline for Trustworthy and Deployable Artificial Intelligence in Healthcare. BMJ, 388, e081554.
https://doi.org/10.1136/bmj-2024-081554
[87]  Hasanah, K.S. (2025) Exploring the Ethical Dimensions of Artificial Intelligence Development: Creating Transparent and Responsible AI Systems for Global Impact. International Journal of Information Technology and Electrical Engineering, 14, 33-45.
https://www.researchgate.net/publication/389371517
[88]  Buthut, M., Starke, G., Akmazoglu, T.B., Colucci, A., Vermehren, M., van Beinum, A., et al. (2024) HYBRIDMINDS—Summary and Outlook of the 2023 International Conference on the Ethics and Regulation of Intelligent Neuroprostheses. Frontiers in Human Neuroscience, 18, Article 1489307.
https://doi.org/10.3389/fnhum.2024.1489307

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133