Artificial intelligence (AI) and neurotechnologies are redefining neuropsychological rehabilitation, enabling precision-guided, real-time neuromodulation. This review introduces the hybrid mind paradigm—a convergence of biological and artificial cognition—operationalized through AI-enhanced braincomputer interfaces (BCIs), deep brain stimulation (DBS), and adaptive neurofeedback. These technologies integrate closed-loop modulation and neuroadaptive algorithms to optimize neuroplasticity and functional recovery. While AI-driven systems show promise in cognitive and motor domains, translational barriers persist, including algorithmic opacity, neural data governance, and fragmented regulation. We synthesize recent evidence and outline strategic priorities: implementation of explainable AI frameworks, development of non-invasive neuromodulatory alternatives, and global harmonization of ethical standards. As AI and neuroscience converge, the hybrid mind paradigm signals a pivotal shift toward individualized, ethically guided neurorehabilitation.
References
[1]
Caiado, F. and Ukolov, A. (2025) The History, Current State and Future Possibilities of the Non-Invasive Brain Computer Interfaces. MedicineinNovelTechnologyandDevices, 25, Article 100353. https://doi.org/10.1016/j.medntd.2025.100353
[2]
Kumar, D., Kumar, P., Pal, S. and Singh, S. (2025) AI-Enhanced Neurophysiological Assessment. In: Bansal, R., Maqableh, T., Shuklaa, G., Rabby, F. and Lathabhavan, R., Eds., Transforming Neuropsychology and Cognitive Psychology with AI and Machine Learning, IGI Global, 33-64. https://doi.org/10.4018/979-8-3693-9341-3.ch002
[3]
Elashmawi, W.H., Ayman, A., Antoun, M., Mohamed, H., Mohamed, S.E., Amr, H., etal. (2024) A Comprehensive Review on Brain-Computer Interface (BCI)-Based Machine and Deep Learning Algorithms for Stroke Rehabilitation. AppliedSciences, 14, Article 6347. https://doi.org/10.3390/app14146347
[4]
Sarda, J., Shah, M., Vaghela, R., Vaishnani, D. and Patel, H. (2025) Hand Kinematics and Decoding Hindlimb Kinematics Using Local Field Potentials Using a Deep Neural Network Decoding Framework. In: Subasi, A., Qaisar, S.M., Bhoi, A.K. and Srinivasu, P.N., Eds., ArtificialIntelligenceApplicationsforBrain-ComputerInterfaces, Elsevier, 63-79. https://doi.org/10.1016/b978-0-443-33414-6.00004-6
[5]
Onciul, R., Tataru, C., Dumitru, A.V., Crivoi, C., Serban, M., Covache-Busuioc, R., etal. (2025) Artificial Intelligence and Neuroscience: Transformative Synergies in Brain Research and Clinical Applications. JournalofClinicalMedicine, 14, Article 550. https://doi.org/10.3390/jcm14020550
[6]
Medenica, V., Ivanovic, L. and Milosevic, N. (2024) Applicability of Artificial Intelligence in Neuropsychological Rehabilitation of Patients with Brain Injury. AppliedNeuropsychology:Adult. https://doi.org/10.1080/23279095.2024.2364229
[7]
Murthy, Y.S., Bansal, R., Chodisetty, R.S.C.M., Chakravorty, C. and Sai, K.P. (2025) Transforming Minds AI and Machine Learning Applications in Cognitive Neuroscience. In: Bansal, R., Maqableh, T., Shuklaa, G., Rabby, F. and Lathabhavan, R., Eds., Transforming Neuropsychology and Cognitive Psychology with AI and Machine Learning, IGI Global, 107-128. https://doi.org/10.4018/979-8-3693-9341-3.ch005
[8]
Korade, A.G., Phulbone, M.V., Aedma, A. and Jadhav, A. (2024) Exploring Human Potential: The Integration of Neuroplasticity, Cognitive Enhancement, and Artificial Intelligence in Mental Health and Well-Being. InternationalJournalofToxicologicalandPharmacologicalResearch, 14, 124-134.
[9]
Calderone, A., Latella, D., Bonanno, M., Quartarone, A., Mojdehdehbaher, S., Celesti, A., etal. (2024) Towards Transforming Neurorehabilitation: The Impact of Artificial Intelligence on Diagnosis and Treatment of Neurological Disorders. Biomedicines, 12, Article 2415. https://doi.org/10.3390/biomedicines12102415
[10]
Soekadar, S., Chandler, J., Ienca, M. and Bublitz, C. (2021) On the Verge of the Hybrid Mind. Morals&Machines, 1, 30-43. https://doi.org/10.5771/2747-5174-2021-1-30
[11]
Simon, C., Bolton, D.A.E., Kennedy, N.C., Soekadar, S.R. and Ruddy, K.L. (2021) Challenges and Opportunities for the Future of Brain-Computer Interface in Neurorehabilitation. FrontiersinNeuroscience, 15, Article 699428. https://doi.org/10.3389/fnins.2021.699428
[12]
Mane, R., Wu, Z. and Wang, D. (2022) Poststroke Motor, Cognitive and Speech Rehabilitation with Brain-Computer Interface: A Perspective Review. Stroke and Vascular Neurology, 7, 541-549. https://doi.org/10.1136/svn-2022-001506
[13]
Yuste, R. (2023) Advocating for Neurodata Privacy and Neurotechnology Regulation. NatureProtocols, 18, 2869-2875. https://doi.org/10.1038/s41596-023-00873-0
[14]
George, A.S. (2024) Protecting Brain Privacy in the Age of Neurotechnology: Policy Responses and Remaining Challenges. PublicInterestResearch&Policy, 1, 18-33. https://doi.org/10.5281/zenodo.13942131
[15]
Eke, D. (2024) Ethics and Governance of Neurotechnology in Africa: Lessons from AI. JMIRNeurotechnology, 3, e56665. https://doi.org/10.2196/56665
[16]
Van Den Broek, S.R., Bagot, K.L., Arthurson, L., Cadilhac, D.A. and Stolwyk, R.J. (2021) Investigating Clinician Experiences of Teleneuropsychology Service Implementation within Rural Inpatient Rehabilitation Settings: A Mixed Method Approach. ArchivesofClinicalNeuropsychology, 37, 775-788. https://doi.org/10.1093/arclin/acab086
[17]
Singh, S. and Germine, L. (2020) Technology Meets Tradition: A Hybrid Model for Implementing Digital Tools in Neuropsychology. InternationalReviewofPsychiatry, 33, 382-393. https://doi.org/10.1080/09540261.2020.1835839
[18]
Mariano, M.A., Tang, K., Kurtz, M. and Kates, W.R. (2016) Examining the Durability of a Hybrid, Remote and Computer‐Based Cognitive Remediation Intervention for Adolescents with 22q11.2 Deletion Syndrome. EarlyInterventioninPsychiatry, 12, 686-693. https://doi.org/10.1111/eip.12367
[19]
Mahan, S., Rous, R. and Adlam, A. (2017) Systematic Review of Neuropsychological Rehabilitation for Prospective Memory Deficits as a Consequence of Acquired Brain Injury. JournaloftheInternationalNeuropsychologicalSociety, 23, 254-265. https://doi.org/10.1017/s1355617716001065
[20]
Ho, R.T., Xue, W., See, M.K., Chan, D.Y., Tsang, A.C., Mak, C.H., etal. (2025) Advances in Clinical Brain-Computer Interfaces for Assistive Substitution and Rehabilitation: A Rapid Scoping Review. SurgicalPractice, 29, 35-49. https://doi.org/10.1111/1744-1633.70002
[21]
Drigas, A. and Sideraki, A. (2024) Brain Neuroplasticity Leveraging Virtual Reality and Brain-Computer Interface Technologies. Sensors, 24, Article 5725. https://doi.org/10.3390/s24175725
[22]
Cruz, M.V., Jamal, S. and Sethuraman, S.C. (2024) A Comprehensive Survey of Brain-Computer Interface Technology in Healthcare: Research Perspectives. Preprints. https://doi.org/10.20944/preprints202403.0082.v1
[23]
Zhao, C., Ju, F., Sun, W., Jiang, S., Xi, X., Wang, H., etal. (2022) Effects of Training with a Brain-Computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial. NeurologyandTherapy, 11, 679-695. https://doi.org/10.1007/s40120-022-00333-z
[24]
Liu, X., Zhang, W., Li, W., Zhang, S., Lv, P. and Yin, Y. (2023) Effects of Motor Imagery Based Brain-Computer Interface on Upper Limb Function and Attention in Stroke Patients with Hemiplegia: A Randomized Controlled Trial. BMCNeurology, 23, Article No. 136. https://doi.org/10.1186/s12883-023-03150-5
[25]
Borisova, V.A., Isakova, E.V. and Kotov, S.V. (2023) Potential of a Brain-Computer Interface for Correcting Poststroke Cognitive Impairments. NeuroscienceandBehavioralPhysiology, 53, 988-993. https://doi.org/10.1007/s11055-023-01492-8
[26]
Georgiev, D., Georgieva, I., Gong, Z., Nanjappan, V. and Georgiev, G. (2021) Virtual Reality for Neurorehabilitation and Cognitive Enhancement. BrainSciences, 11, Article 221. https://doi.org/10.3390/brainsci11020221
[27]
Carelli, L., Solca, F., Faini, A., Meriggi, P., Sangalli, D., Cipresso, P., etal. (2017) Brain-Computer Interface for Clinical Purposes: Cognitive Assessment and Rehabilitation. BioMedResearchInternational, 2017, Article ID: 1695290. https://doi.org/10.1155/2017/1695290
[28]
Huggins, J.E., Krusienski, D., Vansteensel, M.J., Valeriani, D., Thelen, A., Stavisky, S., etal. (2022) Workshops of the Eighth International Brain-Computer Interface Meeting: BCIs: The Next Frontier. Brain-ComputerInterfaces, 9, 69-101. https://doi.org/10.1080/2326263x.2021.2009654
[29]
Awuah, W.A., Ahluwalia, A., Darko, K., Sanker, V., Tan, J.K., Tenkorang, P.O., etal. (2024) Bridging Minds and Machines: The Recent Advances of Brain-Computer Interfaces in Neurological and Neurosurgical Applications. WorldNeurosurgery, 189, 138-153. https://doi.org/10.1016/j.wneu.2024.05.104
[30]
Carè, M., Chiappalone, M. and Cota, V.R. (2024) Personalized Strategies of Neurostimulation: From Static Biomarkers to Dynamic Closed-Loop Assessment of Neural Function. FrontiersinNeuroscience, 18, Article 1363128. https://doi.org/10.3389/fnins.2024.1363128
[31]
Patrick-Krueger, K.M., Burkhart, I. and Contreras-Vidal, J.L. (2024) The State of Clinical Trials of Implantable Brain-Computer Interfaces. NatureReviewsBioengineering, 3, 50-67. https://doi.org/10.1038/s44222-024-00239-5
[32]
Camargo, L. F. (2024) Estratégia de uso de inteligência artificial explicável no apoio à reabilitação neuromotora. Ph.D. Thesis, Universidade Estadual Paulista. https://repositorio.unesp.br/bitstreams/4d999102-7f2b-4ebc-9b81-9961e2b1f065/download
[33]
Voigtlaender, S., Pawelczyk, J., Geiger, M., Vaios, E.J., Karschnia, P., Cudkowicz, M., etal. (2024) Artificial Intelligence in Neurology: Opportunities, Challenges, and Policy Implications. JournalofNeurology, 271, 2258-2273. https://doi.org/10.1007/s00415-024-12220-8
[34]
Jia, T., Li, C., Mo, L., Qian, C., Li, W., Xu, Q., etal. (2022) Tailoring Brain-Machine Interface Rehabilitation Training Based on Neural Reorganization: Towards Personalized Treatment for Stroke Patients. CerebralCortex, 33, 3043-3052. https://doi.org/10.1093/cercor/bhac259
[35]
Baker, K.B., Plow, E.B., Nagel, S., Rosenfeldt, A.B., Gopalakrishnan, R., Clark, C., etal. (2023) Cerebellar Deep Brain Stimulation for Chronic Post-Stroke Motor Rehabilitation: A Phase I Trial. NatureMedicine, 29, 2366-2374. https://doi.org/10.1038/s41591-023-02507-0
[36]
Chen, Y., Xu, Z., Liu, T., Li, D., Tian, X., Zheng, R., etal. (2024) Application of Deep Brain Stimulation and Transcranial Magnetic Stimulation in Stroke Neurorestoration: A Review. JournalofNeurorestoratology, 12, Article 100120. https://doi.org/10.1016/j.jnrt.2024.100120
[37]
Kesikburun, S. (2022) Non-Invasive Brain Stimulation in Rehabilitation. TurkishJournalofPhysicalMedicineandRehabilitation, 68, 1-8. https://doi.org/10.5606/tftrd.2022.10608
[38]
Kumar, J., Patel, T., Sugandh, F., Dev, J., Kumar, U., Adeeb, M., etal. (2023) Innovative Approaches and Therapies to Enhance Neuroplasticity and Promote Recovery in Patients with Neurological Disorders: A Narrative Review. Cureus, 15, e41914. https://doi.org/10.7759/cureus.41914
[39]
Canesi, M., Lippi, L., Rivaroli, S., Vavassori, D., Trenti, M., Sartorio, F., etal. (2024) Long-Term Impact of Deep Brain Stimulation in Parkinson’s Disease: Does It Affect Rehabilitation Outcomes? Medicina, 60, Article 927. https://doi.org/10.3390/medicina60060927
[40]
Keci, A., Tani, K. and Xhema, J. (2019) Role of Rehabilitation in Neural Plasticity. OpenAccessMacedonianJournalofMedicalSciences, 7, 1540-1547. https://doi.org/10.3889/oamjms.2019.295
[41]
Saway, B.F., Palmer, C., Hughes, C., Triano, M., Suresh, R.E., Gilmore, J., etal. (2024) The Evolution of Neuromodulation for Chronic Stroke: From Neuroplasticity Mechanisms to Brain-Computer Interfaces. Neurotherapeutics, 21, e00337. https://doi.org/10.1016/j.neurot.2024.e00337
[42]
Cernera, S., Okun, M.S. and Gunduz, A. (2019) A Review of Cognitive Outcomes across Movement Disorder Patients Undergoing Deep Brain Stimulation. FrontiersinNeurology, 10, Article 419. https://doi.org/10.3389/fneur.2019.00419
[43]
Kabotyanski, K.E., Najera, R.A., Banks, G.P., Sharma, H., Provenza, N.R., Hayden, B.Y., etal. (2024) Cost-Effectiveness and Threshold Analysis of Deep Brain Stimulation Vs. Treatment-as-Usual for Treatment-Resistant Depression. TranslationalPsychiatry, 14, Article No. 243. https://doi.org/10.1038/s41398-024-02951-7
[44]
Deng, H., Yue, J.K. and Wang, D.D. (2020) Trends in Safety and Cost of Deep Brain Stimulation for Treatment of Movement Disorders in the United States: 2002-2014. BritishJournalofNeurosurgery, 35, 57-64. https://doi.org/10.1080/02688697.2020.1759776
[45]
Giansanti, D. (2025) Advancements in Ocular Neuro-Prosthetics: Bridging Neuroscience and Information and Communication Technology for Vision Restoration. Biology, 14, Article 134. https://doi.org/10.3390/biology14020134
[46]
Lyu, Y., An, P., Xiao, Y., Zhang, Z., Zhang, H., Katsuragawa, K., etal. (2023) Eggly: Designing Mobile Augmented Reality Neurofeedback Training Games for Children with Autism Spectrum Disorder. ProceedingsoftheACMonInteractive, Mobile, WearableandUbiquitousTechnologies, 7, Article No. 67. https://doi.org/10.1145/3596251
[47]
Laver, K.E., Lange, B., George, S., Deutsch, J.E., Saposnik, G. and Crotty, M. (2017) Virtual Reality for Stroke Rehabilitation. CochraneDatabaseofSystematicReviews, No. 11, CD008349. https://doi.org/10.1002/14651858.cd008349.pub4
[48]
Pedroli, E., Serino, S., Cipresso, P., Pallavicini, F. and Riva, G. (2015) Assessment and Rehabilitation of Neglect Using Virtual Reality: A Systematic Review. FrontiersinBehavioralNeuroscience, 9, Article 226. https://doi.org/10.3389/fnbeh.2015.00226
[49]
Baragash, R.S., Aldowah, H. and Ghazal, S. (2022) Virtual and Augmented Reality Applications to Improve Older Adults’ Quality of Life: A Systematic Mapping Review and Future Directions. DigitalHealth, 8. https://doi.org/10.1177/20552076221132099
[50]
Enriquez-Geppert, S., Smit, D., Pimenta, M.G. and Arns, M. (2019) Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice. CurrentPsychiatryReports, 21, Article No. 46. https://doi.org/10.1007/s11920-019-1021-4
[51]
Cha, S. (2024) Mobile Application Applied for Cognitive Rehabilitation: A Systematic Review. Life, 14, Article 891. https://doi.org/10.3390/life14070891
[52]
de Alcântara Uchôa Belfort, R.-E., Lima, M.O., Mendes, A.C., Martins, R.A.B.L., Silva Júnior, H.C., de Sousa Rodrigues, H.E., etal. (2022) Desenvolvimento de jogos sérios para reabilitação neurológica de pacientes. Research, SocietyandDevelopment, 11, 1-15. https://doi.org/10.33448/rsd-v11i16.37437
[53]
Mansour, S., Ang, K.K., Nair, K.P.S., Phua, K.S. and Arvaneh, M. (2021) Efficacy of Brain-Computer Interface and the Impact of Its Design Characteristics on Poststroke Upper-Limb Rehabilitation: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. ClinicalEEGandNeuroscience, 53, 79-90. https://doi.org/10.1177/15500594211009065
[54]
Zhao, C., Ju, F., Sun, W., Jiang, S., Xi, X., Wang, H., etal. (2022) Effects of Training with a Brain–computer Interface-Controlled Robot on Rehabilitation Outcome in Patients with Subacute Stroke: A Randomized Controlled Trial. NeurologyandTherapy, 11, 679-695. https://doi.org/10.1007/s40120-022-00333-z
[55]
Mang, J., Xu, Z., Qi, Y. and Zhang, T. (2023) Favoring the Cognitive-Motor Process in the Closed-Loop of BCI Mediated Post Stroke Motor Function Recovery: Challenges and Approaches. FrontiersinNeurorobotics, 17, Article 1271967. https://doi.org/10.3389/fnbot.2023.1271967
[56]
Arntz, A., Weber, F., Handgraaf, M., Lällä, K., Korniloff, K., Murtonen, K., etal. (2023) Technologies in Home-Based Digital Rehabilitation: Scoping Review. JMIRRehabilitationandAssistiveTechnologies, 10, e43615. https://doi.org/10.2196/43615
[57]
Formica, C., Bonanno, M., Sorbera, C., Quartarone, A., Giambò, F.M., Marra, A., etal. (2024) Smartphone-Based Cognitive Telerehabilitation: A Usability and Feasibility Study Focusing on Mild Cognitive Impairment. Sensors, 24, Article 525. https://doi.org/10.3390/s24020525
[58]
Goering, S., Klein, E., Specker Sullivan, L., Wexler, A., Agüera y Arcas, B., Bi, G., etal. (2021) Recommendations for Responsible Development and Application of Neurotechnologies. Neuroethics, 14, 365-386. https://doi.org/10.1007/s12152-021-09468-6
[59]
Ienca, M. and Andorno, R. (2017) Towards New Human Rights in the Age of Neuroscience and Neurotechnology. LifeSciences, SocietyandPolicy, 13, Article No. 5. https://doi.org/10.1186/s40504-017-0050-1
[60]
Ienca, M. and Ignatiadis, K. (2020) Artificial Intelligence in Clinical Neuroscience: Methodological and Ethical Challenges. AJOBNeuroscience, 11, 77-87. https://doi.org/10.1080/21507740.2020.1740352
[61]
Rieger, P.F.S.N. (2022) Privacidade mental e liberdade cognitiva: Perspectivas e desdobramentos para novos direitos fundamentais no contexto de desenvolvimento e aplicação de neurotecnologia. Master Thesis, Instituto Brasileiro de Ensino, Desenvolvimento e Pesquisa-IDP. https://repositorio.idp.edu.br/bitstream/123456789/4239/1/DISSERTACAO_%20POLIENE%20FERNANDA%20SOUZA%20NASCIMENTO%20RIEGER%20_%20MESTRADO_2022.pdf
[62]
Kritika, M. (2024) A Comprehensive Study on Navigating Neuroethics in Cyberspace. AIandEthics, 5, 93-100. https://doi.org/10.1007/s43681-024-00486-7
[63]
Rastrelli, H. (2024) Beyond Faith, Power, and Pride: An Arms Race of Neurotechnol-ogy and Extremism. Master’s Thesis, Georgetown University. https://repository.library.georgetown.edu/bitstream/handle/10822/1088830/Rastrelli_georgetown_0076M_16040.pdf?sequence=1
[64]
Aziz, A.Y. (2023) Neurotechnology and the Law: Legal Considerations for Privacy, Autonomy, and Liability. CyberLeninka. https://cyberleninka.ru/article/n/neurotechnology-and-the-law-legal-considerations-for-privacy-autonomy-and-liability
[65]
Bublitz, C. (2024) Neurotechnologies and Human Rights: Restating and Reaffirming the Multi-Layered Protection of the Person. TheInternationalJournalofHumanRights, 28, 782-807. https://doi.org/10.1080/13642987.2024.2310830
[66]
Chandra, P., Sharma, H. and Sachan, N. (2025) Explainable and Responsible AI in Neuroscience: Cognitive Neurostimulation. In Malviya, R. and Sundram, S., Eds., Explainable and Responsible Artificial Intelligence in Healthcare. Wiley, 27-63. https://doi.org/10.1002/9781394302444.ch2
[67]
Ienca, M., Valle, G. and Raspopovic, S. (2025) Clinical Trials for Implantable Neural Prostheses: Understanding the Ethical and Technical Requirements. TheLancetDigitalHealth, 7, e216-e224. https://doi.org/10.1016/s2589-7500(24)00222-x
[68]
McCullum, T. and Contreras Mancera, L.C. (2025) Neurotechnology Combined with Artificial Intelligence and Neurorights: A Legal Discussion. RevistaLaPropiedadInmaterial, 39, 145-183. https://heinonline.org/hol-cgi-bin/get_pdf.cgi?handle=hein.journals/revpropin39§ion=8
[69]
Federico, C.A. and Trotsyuk, A.A. (2024) Biomedical Data Science, Artificial Intelligence, and Ethics: Navigating Challenges in the Face of Explosive Growth. AnnualReviewofBiomedicalDataScience, 7, 1-14. https://doi.org/10.1146/annurev-biodatasci-102623-104553
[70]
Garden, H., Winickoff, D.E. and Frahm, N.M. (2019) Responsible Innovation in Neu-rotechnology Enterprises. OECD Science, Technology and Industry Working Paper Series. https://doi.org/10.1787/9685e4fd-en
[71]
Tröster, A.I. (2024) Developments in the Prediction of Cognitive Changes Following Deep Brain Stimulation in Persons with Parkinson’s Disease. ExpertReviewofNeurotherapeutics, 24, 643-659. https://doi.org/10.1080/14737175.2024.2360121
[72]
Zuk, P., Sanchez, C.E., Kostick-Quenet, K., Muñoz, K.A., Kalwani, L., Lavingia, R., etal. (2022) Researcher Views on Changes in Personality, Mood, and Behavior in Next-Generation Deep Brain Stimulation. AJOBNeuroscience, 14, 287-299. https://doi.org/10.1080/21507740.2022.2048724
[73]
Merner, A.R., Kostick-Quenet, K., Campbell, T.A., Pham, M.T., Sanchez, C.E., Torgerson, L., etal. (2023) Participant Perceptions of Changes in Psychosocial Domains Following Participation in an Adaptive Deep Brain Stimulation Trial. BrainStimulation, 16, 990-998. https://doi.org/10.1016/j.brs.2023.06.007
[74]
Wong, J.K., Mayberg, H.S., Wang, D.D., Richardson, R.M., Halpern, C.H., Krinke, L., etal. (2023) Proceedings of the 10th Annual Deep Brain Stimulation Think Tank: Advances in Cutting Edge Technologies, Artificial Intelligence, Neuromodulation, Neuroethics, Interventional Psychiatry, and Women in Neuromodulation. FrontiersinHumanNeuroscience, 16, Article 1084782. https://doi.org/10.3389/fnhum.2022.1084782
[75]
Cornejo, Y. (2024) Neurorights, Neurotechnologies and Personal Data: Review of the Challenges of Mental Autonomy. JournalofDigitalTechnologiesandLaw, 2, 711-728. https://doi.org/10.21202/jdtl.2024.36
[76]
Ruiz, S., Valera, L., Ramos, P. and Sitaram, R. (2024) Neurorights in the Constitution: From Neurotechnology to Ethics and Politics. PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences, 379, Article 20230098. https://doi.org/10.1098/rstb.2023.0098
[77]
Guerrero, F. (2024) Neurorights: A New Legal and Ethical Frontier. Multidisciplinary & Health Education Journal, 6, 979-991. https://journalmhe.org/ojs3/index.php/jmhe/article/view/128
[78]
Yuste, R., Goering, S., Arcas, B.A.y., Bi, G., Carmena, J.M., Carter, A., etal. (2017) Four Ethical Priorities for Neurotechnologies and AI. Nature, 551, 159-163. https://doi.org/10.1038/551159a
[79]
Takeuchi, Y. and Berényi, A. (2020) Oscillotherapeutics—Time-Targeted Interventions in Epilepsy and Beyond. NeuroscienceResearch, 152, 87-107. https://doi.org/10.1016/j.neures.2020.01.002
[80]
Caston, R.M. (2023) High-Density Intracranial Electrodes to Investigate and Modu-late the Spatiotemporal Signatures of Pain. Doctoral Dissertation, ProQuest Dissertations Publishing. https://search.proquest.com/openview/551707ce8124e8df00e6d53f6e484d1c/1?pq-origsite=gscholar&cbl=18750&diss=y
[81]
Fomenko, A., Neudorfer, C., Dallapiazza, R.F., Kalia, S.K. and Lozano, A.M. (2018) Low-Intensity Ultrasound Neuromodulation: An Overview of Mechanisms and Emerging Human Applications. BrainStimulation, 11, 1209-1217. https://doi.org/10.1016/j.brs.2018.08.013
[82]
Tubbs, A. and Vazquez, E.A. (2024) Engineering and Technological Advancements in Repetitive Transcranial Magnetic Stimulation (rTMS): A Five-Year Review. BrainSciences, 14, 1092. https://doi.org/10.3390/brainsci14111092
[83]
Ho, R.T., Xue, W., See, M.K., Chan, D.Y., Tsang, A.C., Mak, C.H., etal. (2025) Advances in Clinical Brain-Computer Interfaces for Assistive Substitution and Rehabilitation: A Rapid Scoping Review. SurgicalPractice, 29, 35-49. https://doi.org/10.1111/1744-1633.70002
[84]
Michałowska, M., Kowalczyk, Ł., Marcinkowska, W. and Malicki, M. (2021) Being Outside the Decision-Loop: The Impact of Deep Brain Stimulation and Brain-Computer Interfaces on Autonomy. AnalizaiEgzystencja, 56, 25-52. https://doi.org/10.18276/aie.2021.56-02
[85]
Gordon, E.C. and Seth, A.K. (2024) Ethical Considerations for the Use of Brain–computer Interfaces for Cognitive Enhancement. PLOSBiology, 22, e3002899. https://doi.org/10.1371/journal.pbio.3002899
[86]
Lekadir, K., Frangi, A.F., Porras, A.R., Glocker, B., Cintas, C., Langlotz, C.P., etal. (2025) FUTURE-AI: International Consensus Guideline for Trustworthy and Deployable Artificial Intelligence in Healthcare. BMJ, 388, e081554. https://doi.org/10.1136/bmj-2024-081554
[87]
Hasanah, K.S. (2025) Exploring the Ethical Dimensions of Artificial Intelligence Development: Creating Transparent and Responsible AI Systems for Global Impact. InternationalJournalofInformationTechnologyandElectricalEngineering, 14, 33-45. https://www.researchgate.net/publication/389371517
[88]
Buthut, M., Starke, G., Akmazoglu, T.B., Colucci, A., Vermehren, M., van Beinum, A., etal. (2024) HYBRIDMINDS—Summary and Outlook of the 2023 International Conference on the Ethics and Regulation of Intelligent Neuroprostheses. FrontiersinHumanNeuroscience, 18, Article 1489307. https://doi.org/10.3389/fnhum.2024.1489307