全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Spatiotemporal Characteristics of Snow Cover and Its Climate Impacts in the Western Tibetan Plateau Region

DOI: 10.4236/acs.2025.153028, PP. 549-577

Keywords: Snow Cover Fraction (SCF), Snow Depth (SD), Western Tibetan Plateau (WTP), Seasonal Variability, General Circulation, Sea Surface Temperature (SST)

Full-Text   Cite this paper   Add to My Lib

Abstract:

The western Tibetan Plateau (WTP; west of 80?E) represents a distinct geographical domain bounded by the Pamir Plateau, Karakoram Range, and Hindu Kush mountains. Characterized by perennial snow cover, this region plays a critical role in global and regional climate systems while serving as a vital freshwater reservoir for over 400 million people across the Indus, Amu Darya, and Tarim River basins. This study investigates spatiotemporal variations in snow cover fraction (SCF) and snow depth (SD) across the WTP from 1978 to 2020 using weekly snow cover data from the National Snow and Ice Data Center (NSIDC) and daily snow depth records from the National Tibet Plateau Data Center (TPDC). Results showed a significant decline in SCF at rates of ?0.17% and ?0.93% 10 a?1 during spring and summer, respectively, alongside a springtime reduction (?0.02 cm 10 a?1) and slightly increase in summer (0.001 cm 10 a?1) SD. These trends are attributed to rising seasonal temperatures (0.04?C and 0.02?C 10 a?1) and shifts in precipitation patterns (?0.16 mm and +0.04 mm 10 a?1) in the same season. Correlation analyses identify that the ENSO IOBW, and TIOD show positive relationship with SCF reductions, while the NAO and SIOD show negative correlation. These findings underscore the sensitivity of WTP snow cover to climatic drivers and water resource management for downstream regions in South and East Asia.

References

[1]  Barnett, T.P., Dümenil, L., Schlese, U., Roeckner, E. and Latif, M. (1989) The Effect of Eurasian Snow Cover on Regional and Global Climate Variations. Journal of the Atmospheric Sciences, 46, 661-686.
https://doi.org/10.1175/1520-0469(1989)046<0661:teoesc>2.0.co;2
[2]  Yasunari, T., Kitoh, A. and Tokioka, T. (1991) Local and Remote Responses to Excessive Snow Mass over Eurasia Appearing in the Northern Spring and Summer Climate. Journal of the Meteorological Society of Japan. Ser. II, 69, 473-487.
https://doi.org/10.2151/jmsj1965.69.4_473
[3]  Lutz, A.F., Immerzeel, W.W., Shrestha, A.B. and Bierkens, M.F.P. (2014) Consistent Increase in High Asia’s Runoff Due to Increasing Glacier Melt and Precipitation. Nature Climate Change, 4, 587-592.
https://doi.org/10.1038/nclimate2237
[4]  Wang, C., Yang, K., Li, Y., Wu, D. and Bo, Y. (2017) Impacts of Spatiotemporal Anomalies of Tibetan Plateau Snow Cover on Summer Precipitation in Eastern China. Journal of Climate, 30, 885-903.
https://doi.org/10.1175/jcli-d-16-0041.1
[5]  Chu, D., Liu, L. and Wang, Z. (2023) Snow Cover on the Tibetan Plateau and Topographic Controls. Remote Sensing, 15, Article 4044.
https://doi.org/10.3390/rs15164044
[6]  Deng, H. and Ji, Z. (2023) Warming and Wetting Will Continue over the Tibetan Plateau in the Shared Socioeconomic Pathways. PLOS ONE, 18, e0289589.
https://doi.org/10.1371/journal.pone.0289589
[7]  Fallah, B., Rostami, M., Didovets, I. and Dong, Z. (2024) High‐Resolution CMIP6 Analysis Highlights Emerging Climate Challenges in Alpine and Tibetan Tundra Zones. Meteorological Applications, 31, e70001.
https://doi.org/10.1002/met.70001
[8]  Li, Y., Wang, C., Tang, Q., Yao, S., Sun, B., Peng, H., et al. (2024) Unraveling the Discrepancies between Eulerian and Lagrangian Moisture Tracking Models in Monsoon-and Westerly-Dominated Basins of the Tibetan Plateau. Atmospheric Chemistry and Physics, 24, 10741-10758.
https://doi.org/10.5194/acp-24-10741-2024
[9]  Wang, B., Zhao, L. and Li, Y. (2023) Temporal and Spatial Variation Characteristics of Snow Cover Area in the Pamirs from 2010 to 2020. Open Journal of Applied Sciences, 13, 109-119.
https://doi.org/10.4236/ojapps.2023.131010
[10]  Ma, Q., Keyimu, M., Li, X., Wu, S., Zeng, F. and Lin, L. (2023) Climate and Elevation Control Snow Depth and Snow Phenology on the Tibetan Plateau. Journal of Hydrology, 617, Article 128938.
https://doi.org/10.1016/j.jhydrol.2022.128938
[11]  Bormann, K.J., Brown, R.D., Derksen, C. and Painter, T.H. (2018) Estimating Snow-Cover Trends from Space. Nature Climate Change, 8, 924-928.
https://doi.org/10.1038/s41558-018-0318-3
[12]  IPCC (2021) Future Global Climate: Scenario-Based Projections and Near-Term Information. In: Intergovernmental Panel on Climate Change (IPCC) Ed., Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, 553-672.
https://doi.org/10.1017/9781009157896.006
[13]  Huang, J., Zhou, X., Wu, G., Xu, X., Zhao, Q., Liu, Y., et al. (2023) Global Climate Impacts of Land‐Surface and Atmospheric Processes over the Tibetan Plateau. Reviews of Geophysics, 61, RG000771.
https://doi.org/10.1029/2022rg000771
[14]  Li, L., Shen, M., Hou, Y., Xu, C., Lutz, A.F., Chen, J., et al. (2019) Twenty-First-Century Glacio-Hydrological Changes in the Himalayan Headwater Beas River Basin. Hydrology and Earth System Sciences, 23, 1483-1503.
https://doi.org/10.5194/hess-23-1483-2019
[15]  Rikiishi, K. and Nakasato, H. (2006) Height Dependence of the Tendency for Reduction in Seasonal Snow Cover in the Himalaya and the Tibetan Plateau Region, 1966-2001. Annals of Glaciology, 43, 369-377.
https://doi.org/10.3189/172756406781811989
[16]  Viste, E. and Sorteberg, A. (2015) Snowfall in the Himalayas: An Uncertain Future from a Little-Known Past. The Cryosphere, 9, 1147-1167.
https://doi.org/10.5194/tc-9-1147-2015
[17]  Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang, K., et al. (2019) Evaluation of Snow Depth and Snow Cover over the Tibetan Plateau in Global Reanalyses Using in Situ and Satellite Remote Sensing Observations. The Cryosphere, 13, 2221-2239.
https://doi.org/10.5194/tc-13-2221-2019
[18]  Khadka, N., Chen, X., Sharma, S. and Shrestha, B. (2023) Climate Change and Its Impacts on Glaciers and Glacial Lakes in Nepal Himalayas. Regional Environmental Change, 23, Article No. 143.
https://doi.org/10.1007/s10113-023-02142-y
[19]  Panicker, D.V., Vachharajani, B.H. and Srivastava, R. (2024) Spatiotemporal Variability of Snow Parameters over Himalayan-Tibetan Region Utilizing ERA-5 Data. Journal of the Indian Society of Remote Sensing, 52, 957-972.
https://doi.org/10.1007/s12524-024-01830-4
[20]  Forsythe, N., Fowler, H.J., Li, X., Blenkinsop, S. and Pritchard, D. (2017) Karakoram Temperature and Glacial Melt Driven by Regional Atmospheric Circulation Variability. Nature Climate Change, 7, 664-670.
https://doi.org/10.1038/nclimate3361
[21]  Farinotti, D., Immerzeel, W.W., de Kok, R.J., Quincey, D.J. and Dehecq, A. (2020) Manifestations and Mechanisms of the Karakoram Glacier Anomaly. Nature Geoscience, 13, 8-16.
https://doi.org/10.1038/s41561-019-0513-5
[22]  Curio, J., Maussion, F. and Scherer, D. (2015) A 12-Year High-Resolution Climatology of Atmospheric Water Transport over the Tibetan Plateau. Earth System Dynamics, 6, 109-124.
https://doi.org/10.5194/esd-6-109-2015
[23]  Zhao, R., Chen, B., Zhang, W., Yang, S. and Xu, X. (2024) Formation Mechanisms of Persistent Extreme Precipitation Events over the Eastern Periphery of the Tibetan Plateau: Synoptic Conditions, Moisture Transport and the Effect of Steep Terrain. Atmospheric Research, 304, Article 107341.
https://doi.org/10.1016/j.atmosres.2024.107341
[24]  Tang, Z., Wang, J., Li, H. and Yan, L. (2013) Spatiotemporal Changes of Snow Cover over the Tibetan Plateau Based on Cloud-Removed Moderate Resolution Imaging Spectroradiometer Fractional Snow Cover Product from 2001 to 2011. Journal of Applied Remote Sensing, 7, Article 073582.
https://doi.org/10.1117/1.jrs.7.073582
[25]  Zhang, P. and Duan, A. (2021) Dipole Mode of the Precipitation Anomaly over the Tibetan Plateau in Mid‐Autumn Associated with Tropical Pacific‐Indian Ocean Sea Surface Temperature Anomaly: Role of Convection over the Northern Maritime Continent. Journal of Geophysical Research: Atmospheres, 126, JD034675.
https://doi.org/10.1029/2021jd034675
[26]  Gao, Y., Dong, H., Dai, Y., Mou, N. and Wei, W. (2023) Contrasting Changes of Snow Cover between Different Regions of the Tibetan Plateau during the Latest 21 Years. Frontiers in Earth Science, 10, Article 1075988.
https://doi.org/10.3389/feart.2022.1075988
[27]  Peings, Y. and Douville, H. (2009) Influence of the Eurasian Snow Cover on the Indian Summer Monsoon Variability in Observed Climatologies and CMIP3 Simulations. Climate Dynamics, 34, 643-660.
https://doi.org/10.1007/s00382-009-0565-0
[28]  Cherchi, A. and Navarra, A. (2012) Influence of ENSO and of the Indian Ocean Dipole on the Indian Summer Monsoon Variability. Climate Dynamics, 41, 81-103.
https://doi.org/10.1007/s00382-012-1602-y
[29]  Halder, S. and Dirmeyer, P.A. (2017) Relation of Eurasian Snow Cover and Indian Summer Monsoon Rainfall: Importance of the Delayed Hydrological Effect. Journal of Climate, 30, 1273-1289.
https://doi.org/10.1175/jcli-d-16-0033.1
[30]  Rupp, P. and Haynes, P. (2021) Zonal Scale and Temporal Variability of the Asian Monsoon Anticyclone in an Idealised Numerical Model. Weather and Climate Dynamics, 2, 413-431.
https://doi.org/10.5194/wcd-2-413-2021
[31]  Mehmood, S., Ashfaq, M., Kapnick, S., Gosh, S., Abid, M.A., Kucharski, F., et al. (2022) Dominant Controls of Cold-Season Precipitation Variability over the High Mountains of Asia. NPJ Climate and Atmospheric Science, 5, Article No. 65.
https://doi.org/10.1038/s41612-022-00282-2
[32]  Ibebuchi, C.C. (2022) Circulation Patterns Linked to the Positive Sub-Tropical Indian Ocean Dipole. Advances in Atmospheric Sciences, 40, 110-128.
https://doi.org/10.1007/s00376-022-2017-2
[33]  Kang, S., Xu, Y., You, Q., Flügel, W., Pepin, N. and Yao, T. (2010) Review of Climate and Cryospheric Change in the Tibetan Plateau. Environmental Research Letters, 5, Article 015101.
https://doi.org/10.1088/1748-9326/5/1/015101
[34]  Yao, T., Thompson, L., Yang, W., Yu, W., Gao, Y., Guo, X., et al. (2012) Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2, 663-667.
https://doi.org/10.1038/nclimate1580
[35]  Immerzeel, W.W., van Beek, L.P.H. and Bierkens, M.F.P. (2010) Climate Change Will Affect the Asian Water Towers. Science, 328, 1382-1385.
https://doi.org/10.1126/science.1183188
[36]  Huang, X., Deng, J., Wang, W., Feng, Q. and Liang, T. (2017) Impact of Climate and Elevation on Snow Cover Using Integrated Remote Sensing Snow Products in Tibetan Plateau. Remote Sensing of Environment, 190, 274-288.
https://doi.org/10.1016/j.rse.2016.12.028
[37]  Brodzik, M. J. & Armstrong, R. (2013) Northern Hemisphere EASE-Grid 2.0 Weekly Snow Cover and Sea Ice Extent. (NSIDC-0046, Version 4). NASA National Snow and Ice Data Center Distributed Active Archive Center.
https://doi.org/10.5067/P7O0HGJLYUQU
[38]  Dai, L., Che, T. and Ding, Y. (2015) Inter-Calibrating SMMR, SSM/I and SSMI/S Data to Improve the Consistency of Snow-Depth Products in China. Remote Sensing, 7, 7212-7230.
https://doi.org/10.3390/rs70607212
[39]  Lavers, D.A., Simmons, A., Vamborg, F. and Rodwell, M.J. (2022) An Evaluation of ERA5 Precipitation for Climate Monitoring. Quarterly Journal of the Royal Meteorological Society, 148, 3152-3165.
https://doi.org/10.1002/qj.4351
[40]  Zhou, B., Xu, Y., Wu, J., Dong, S. and Shi, Y. (2015) Changes in Temperature and Precipitation Extreme Indices over China: Analysis of a High‐Resolution Grid Dataset. International Journal of Climatology, 36, 1051-1066.
https://doi.org/10.1002/joc.4400
[41]  Che, T., Li, X., Jin, R., Armstrong, R. and Zhang, T. (2008) Snow Depth Derived from Passive Microwave Remote-Sensing Data in China. Annals of Glaciology, 49, 145-154.
https://doi.org/10.3189/172756408787814690
[42]  Yao, T., Xue, Y., Chen, D., Chen, F., Thompson, L., Cui, P., et al. (2019) Recent Third Pole’s Rapid Warming Accompanies Cryospheric Melt and Water Cycle Intensification and Interactions between Monsoon and Environment: Multidisciplinary Approach with Observations, Modeling, and Analysis. Bulletin of the American Meteorological Society, 100, 423-444.
https://doi.org/10.1175/bams-d-17-0057.1
[43]  Jiang, X., Zhang, T., Tam, C., Chen, J., Lau, N., Yang, S., et al. (2019) Impacts of ENSO and IOD on Snow Depth over the Tibetan Plateau: Roles of Convections over the Western North Pacific and Indian Ocean. Journal of Geophysical Research: Atmospheres, 124, 11961-11975.
https://doi.org/10.1029/2019jd031384
[44]  Wang, H., Sun, J., Fu, S. and Zhang, Y. (2021) Typical Circulation Patterns and Associated Mechanisms for Persistent Heavy Rainfall Events over Yangtze-Huaihe River Valley during 1981-2020. Advances in Atmospheric Sciences, 38, 2167-2182.
https://doi.org/10.1007/s00376-021-1194-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133