全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于深度学习的电气自动化设备故障诊断与预测技术研究
Research on Fault Diagnosis and Prediction Technology of Electrical Automation Equipment Based on Deep Learning

DOI: 10.12677/jsta.2025.133045, PP. 447-458

Keywords: 深度学习,电气自动化,故障诊断,故障预测,特征提取,模型优化
Deep Learning
, Electrical Automation, Fault Diagnosis, Fault Prediction, Feature Extraction, Model Optimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着电气自动化设备在工业中的广泛应用,故障诊断与预测技术成为确保设备可靠性和安全性的重要研究方向。本研究关注于深度学习技术在电气自动化设备故障诊断与预测中的应用,通过系统梳理深度学习的基础知识和其在相关领域的应用现状,对比分析不同深度学习模型的优势与局限,明确本文的研究定位。在此基础上,综合考虑电气自动化设备故障的类型和特征,采取有效的数据采集与预处理策略,并运用特征提取方法提炼故障信息。本研究进一步探讨深度学习模型在故障诊断实际中的应用,包括模型构建、训练和参数优化等关键技术,通过实验验证该模型的有效性。同时,针对故障预测,构建符合故障动态特性的预测模型,通过案例分析展示其在实际工业环境中的应用潜力。本研究的成果不仅提高了电气自动化设备的监测和维护效率,还有助于推动智能制造领域的发展。
With the widespread application of electrical automation equipment in industry, fault diagnosis and prediction technology has become an important research direction to ensure the reliability and safety of equipment. This study focuses on the application of deep learning technology in the fault diagnosis and prediction of electrical automation equipment. It systematically organizes the foundational knowledge of deep learning and its current applications in related fields, conducting a comparative analysis of the advantages and limitations of different deep learning models, thus clarifying the research positioning of this paper. On this basis, taking into account the types and characteristics of electrical automation equipment faults, effective data collection and preprocessing strategies are adopted, and feature extraction methods are employed to distill fault information. This research further explores the practical application of deep learning models in fault diagnosis, including key techniques such as model construction, training, and parameter optimization, and validates the effectiveness of the model through experimentation. Additionally, for fault prediction, a predictive model that aligns with the dynamic characteristics of faults is constructed, and case analyses demonstrate its application potential in actual industrial environments. The results of this study not only enhance the monitoring and maintenance efficiency of electrical automation equipment but also contribute to the advancement of the intelligent manufacturing field.

References

[1]  张宗泓. 基于机器视觉的列车零部件缺陷检测算法研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2022.
[2]  戴贵明. 基于深度学习技术的电气工程成套设备故障预测的研究[J]. 自动化应用, 2023, 64(18): 98-100.
[3]  Bai, T., Yang, J., Duan, L. and Wang, Y. (2020) Fault Diagnosis Method Research of Mechanical Equipment Based on Sensor Correlation Analysis and Deep Learning. Shock and Vibration, 2020, 1-11.
https://doi.org/10.1155/2020/8898944
[4]  潘韦驰. 基于深度学习的遥感影像场景分类研究[D]: [硕士学位论文]. 赣州: 江西理工大学, 2020.
[5]  张宇. 基于调控一体自动化系统的变电站电气设备故障诊断技术[J]. 科学技术创新, 2022(33): 88-91.
[6]  Xu, Y., Cai, Y. and Song, L. (2023) Condition Assessment of Nuclear Power Plant Equipment Based on Machine Learning Methods: A Review. Nuclear Technology, 209, 929-962.
https://doi.org/10.1080/00295450.2023.2169042
[7]  雷李义. 基于深度学习的水面漂浮物目标检测及分析[D]: [硕士学位论文]. 南宁: 广西大学, 2019.
[8]  陈公兴. 基于深度学习的机器人电气故障检测与诊断研究[J]. 自动化与仪表, 2020, 35(12): 40-44.
[9]  Tao, S. (2021) Machinery Fault Diagnosis Technology Based on Artificial Intelligence Technology. In: Xu, Z., Parizi, R.M., Loyola-González, O. and Zhang, X., Eds., Advances in Intelligent Systems and Computing, Springer, 333-340.
https://doi.org/10.1007/978-3-030-70042-3_48
[10]  杨云, 丁磊, 张昊宇. 改进一维卷积神经网络与双向门控循环单元的轴承故障诊断研究[J]. 机械科学与技术, 2023, 42(4): 538-545.
[11]  辛永, 黄文思, 陆鑫, 等. 基于深度学习LSTM的线损预测技术研究与应用[J]. 电气自动化, 2019, 41(4): 104-106.
[12]  许伟欣, 杨明, 骆海琦, 等. 基于深度学习模型的光伏发电负荷预测[J]. 电气传动自动化, 2023, 45(4): 62-64+49.
[13]  郭秀才, 吴妮, 曹鑫. 基于特征融合与DBN的矿用通风机滚动轴承故障诊断[J]. 工矿自动化, 2021, 47(10): 14-20+26.
[14]  王勋, 杨浩, 毛华敏, 曾晗, 程宏波. 深度学习在故障电气设备诊断中的应用[J]. 传感器与微系统, 2020, 39(12): 157-160.
[15]  乔怡群, 王田, 刘克新, 等. 基于自监督学习的动力设备异常检测方法[J]. 空间控制技术与应用, 2023, 49(6): 86-93.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133