全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

真菌降解木质纤维素生物质作用机制及研究展望
Mechanisms of Fungal Degradation of Lignocellulosic Biomass and Future Research Perspectives

DOI: 10.12677/ije.2025.142014, PP. 113-120

Keywords: 木质纤维素生物质,真菌降解机制,协同降解,可持续能源发展
Lignocellulosic Biomass
, Fungal Degradation Mechanisms, Synergistic Degradation, Sustainable Energy Development

Full-Text   Cite this paper   Add to My Lib

Abstract:

木质纤维素生物质是自然界中含量最丰富的可再生资源,但是由于其结构的复杂性与紧密性,导致难以利用。然而利用微生物对木质纤维素生物质进行降解是提高其利用率并且促进安全、高效、绿色的产业发展的理想模式。结合国内外研究进展,本文重点解析了真菌降解木质纤维素生物质的降解机制,以期为研究微生物降解木质纤维素生物质提供参考依据,并为相关研究提供理论基础,进而有助于开发出更高效、环保生物质转化技术,推动生物质能源可持续发展。
Lignocellulosic biomass is one of the most abundant renewable resources in nature, but the complexity and compactness of its structure makes it difficult to utilize. However, the degradation of lignocellulosic biomass by microorganisms is an ideal model to improve its utilization and promote the development of safe, efficient and green industries. Combined with domestic and international research progress, this paper focuses on the analysis of the degradation mechanism of lignocellulosic biomass degradation by fungi, with a view to providing a reference basis for the study of microbial degradation of lignocellulosic biomass and providing a theoretical basis for the related research, which will help to develop a more efficient and environmentally friendly biomass conversion technology, and promote the sustainable development of biomass energy.

References

[1]  Sarsaiya, S., Jain, A., Kumar Awasthi, S., Duan, Y., Kumar Awasthi, M. and Shi, J. (2019) RETRACTED: Microbial Dynamics for Lignocellulosic Waste Bioconversion and Its Importance with Modern Circular Economy, Challenges and Future Perspectives. Bioresource Technology, 291, Article 121905.
https://doi.org/10.1016/j.biortech.2019.121905
[2]  Patel, A. and Shah, A.R. (2021) Integrated Lignocellulosic Biorefinery: Gateway for Production of Second Generation Ethanol and Value Added Products. Journal of Bioresources and Bioproducts, 6, 108-128.
https://doi.org/10.1016/j.jobab.2021.02.001
[3]  Shinde, R., Shahi, D.K., Mahapatra, P., Naik, S.K., Thombare, N. and Singh, A.K. (2022) Potential of Lignocellulose Degrading Microorganisms for Agricultural Residue Decomposition in Soil: A Review. Journal of Environmental Management, 320, Article 115843.
https://doi.org/10.1016/j.jenvman.2022.115843
[4]  Okolie, J.A., Nanda, S., Dalai, A.K. and Kozinski, J.A. (2020) Chemistry and Specialty Industrial Applications of Lignocellulosic Biomass. Waste and Biomass Valorization, 12, 2145-2169.
https://doi.org/10.1007/s12649-020-01123-0
[5]  Harindintwali, J.D., Zhou, J. and Yu, X. (2020) Lignocellulosic Crop Residue Composting by Cellulolytic Nitrogen-Fixing Bacteria: A Novel Tool for Environmental Sustainability. Science of the Total Environment, 715, Article 136912.
https://doi.org/10.1016/j.scitotenv.2020.136912
[6]  张斯童, 兰雪, 李哲, 等. 微生物降解玉米秸秆的研究进展[J]. 吉林农业大学学报, 2016, 38(5): 517-522.
[7]  Chen, Z., Chen, L., Khoo, K.S., Gupta, V.K., Sharma, M., Show, P.L., et al. (2023) Exploitation of Lignocellulosic-Based Biomass Biorefinery: A Critical Review of Renewable Bioresource, Sustainability and Economic Views. Biotechnology Advances, 69, Article 108265.
https://doi.org/10.1016/j.biotechadv.2023.108265
[8]  Syed, K., Doddapaneni, H., Subramanian, V., Lam, Y.W. and Yadav, J.S. (2010) Genome-to-Function Characterization of Novel Fungal P450 Monooxygenases Oxidizing Polycyclic Aromatic Hydrocarbons (PAHs). Biochemical and Biophysical Research Communications, 399, 492-497.
https://doi.org/10.1016/j.bbrc.2010.07.094
[9]  Kubicek, C.P. and Kubicek, E.M. (2016) Enzymatic Deconstruction of Plant Biomass by Fungal Enzymes. Current Opinion in Chemical Biology, 35, 51-57.
https://doi.org/10.1016/j.cbpa.2016.08.028
[10]  Gupta, V.K., Kubicek, C.P., Berrin, J., Wilson, D.W., Couturier, M., Berlin, A., et al. (2016) Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass. Trends in Biochemical Sciences, 41, 633-645.
https://doi.org/10.1016/j.tibs.2016.04.006
[11]  Almeida, D.A., Horta, M.A.C., Ferreira Filho, J.A., Murad, N.F. and de Souza, A.P. (2021) The Synergistic Actions of Hydrolytic Genes Reveal the Mechanism of Trichoderma Harzianum for Cellulose Degradation. Journal of Biotechnology, 334, 1-10.
https://doi.org/10.1016/j.jbiotec.2021.05.001
[12]  Zhang, L., Fu, J., Gao, W., Li, Y. and Fan, X. (2024) Revealing the Structural Variation and Degradation Mechanism of Cellulose during Ozone Oxidation Treatment. Industrial Crops and Products, 219, Article 119101.
https://doi.org/10.1016/j.indcrop.2024.119101
[13]  Contreras, F., Pramanik, S., Rozhkova, M., et al. (2020) Engineering Robust Cellulases for Tailored Lignocellulosic Degradation Cocktails. International Journal of Molecular Sciences, 21, Article 1589.
https://doi.org/10.3390/ijms21051589
[14]  Swathy, R., Rambabu, K., Banat, F., Ho, S., Chu, D. and Show, P.L. (2020) Production and Optimization of High Grade Cellulase from Waste Date Seeds by Cellulomonas Uda NCIM 2353 for Biohydrogen Production. International Journal of Hydrogen Energy, 45, 22260-22270.
https://doi.org/10.1016/j.ijhydene.2019.06.171
[15]  Monclaro, A.V., Gorgulho Silva, C.D.O., Gomes, H.A.R., Moreira, L.R.D.S. and Filho, E.X.F. (2022) The Enzyme Interactome Concept in Filamentous Fungi Linked to Biomass Valorization. Bioresource Technology, 344, Article 126200.
https://doi.org/10.1016/j.biortech.2021.126200
[16]  Floudas, D., Gentile, L., Andersson, E., Kanellopoulos, S.G., Tunlid, A., Persson, P., et al. (2022) X-Ray Scattering Reveals Two Mechanisms of Cellulose Microfibril Degradation by Filamentous Fungi. Applied and Environmental Microbiology, 88, 17.
[17]  Zhu, H., Wang, H., Wang, L. and Zheng, Z. (2024) CRISPR/Cas9-Based Genome Engineering in the Filamentous Fungus Rhizopus Oryzae and Its Application to L-Lactic Acid Production. Biotechnology Journal, 19, Article 2400309.
https://doi.org/10.1002/biot.202400309
[18]  Srivastava, S., Jhariya, U., Purohit, H.J. and Dafale, N.A. (2021) Synergistic Action of Lytic Polysaccharide Monooxygenase with Glycoside Hydrolase for Lignocellulosic Waste Valorization: A Review. Biomass Conversion and Biorefinery, 13, 8727-8745.
https://doi.org/10.1007/s13399-021-01736-y
[19]  Bissaro, B., Kommedal, E., Røhr, Å.K. and Eijsink, V.G.H. (2020) Controlled Depolymerization of Cellulose by Light-Driven Lytic Polysaccharide Oxygenases. Nature Communications, 11, Article No. 890.
https://doi.org/10.1038/s41467-020-14744-9
[20]  陈洪洋, 蔡俊, 林建国, 等. 木聚糖酶的研究进展[J]. 中国酿造, 2016, 35(11): 1-6.
[21]  Andberg, M., Penttilä, M. and Saloheimo, M. (2015) Swollenin from Trichoderma Reesei Exhibits Hydrolytic Activity against Cellulosic Substrates with Features of Both Endoglucanases and Cellobiohydrolases. Bioresource Technology, 181, 105-113.
https://doi.org/10.1016/j.biortech.2015.01.024
[22]  Zerva, A., Pentari, C., Grisel, S., Berrin, J. and Topakas, E. (2020) A New Synergistic Relationship between Xylan-Active LPMO and Xylobiohydrolase to Tackle Recalcitrant Xylan. Biotechnology for Biofuels, 13, Article No. 142.
[23]  Palme, P.R., Goddard, R., Leutzsch, M., Richter, A., Imming, P. and Seidel, R.W. (2023) Structural Elucidation of the Triethylammonium Betaine of Squaric Acid. Molbank, 2023, M1737.
https://doi.org/10.3390/m1737
[24]  Zhang, Y., Chen, S., Yang, L. and Zhang, Q. (2023) Application Progress of Crispr/cas9 Genome-Editing Technology in Edible Fungi. Frontiers in Microbiology, 14, Article 1169884.
https://doi.org/10.3389/fmicb.2023.1169884
[25]  Bischof, R.H., Ramoni, J. and Seiboth, B. (2016) Cellulases and Beyond: The First 70 Years of the Enzyme Producer Trichoderma Reesei. Microbial Cell Factories, 15, Article No. 106.
https://doi.org/10.1186/s12934-016-0507-6
[26]  Valášková, V., Šnajdr, J., Bittner, B., Cajthaml, T., Merhautová, V., Hofrichter, M., et al. (2007) Production of Lignocellulose-Degrading Enzymes and Degradation of Leaf Litter by Saprotrophic Basidiomycetes Isolated from a Quercus Petraea Forest. Soil Biology and Biochemistry, 39, 2651-2660.
https://doi.org/10.1016/j.soilbio.2007.05.023
[27]  Hori, C., Gaskell, J., Igarashi, K., Samejima, M., Hibbett, D., Henrissat, B., et al. (2013) Genomewide Analysis of Polysaccharides Degrading Enzymes in 11 White-And Brown-Rot Polyporales Provides Insight into Mechanisms of Wood Decay. Mycologia, 105, 1412-1427.
https://doi.org/10.3852/13-072
[28]  Peña, A., Babiker, R., Chaduli, D., Lipzen, A., Wang, M., Chovatia, M., et al. (2021) A Multiomic Approach to Understand How Pleurotus Eryngii Transforms Non-Woody Lignocellulosic Material. Journal of Fungi, 7, Article 426.
https://doi.org/10.3390/jof7060426
[29]  Arantes, V., Milagres, A.M.F., Filley, T.R. and Goodell, B. (2010) Lignocellulosic Polysaccharides and Lignin Degradation by Wood Decay Fungi: The Relevance of Nonenzymatic Fenton-Based Reactions. Journal of Industrial Microbiology & Biotechnology, 38, 541-555.
https://doi.org/10.1007/s10295-010-0798-2
[30]  许从峰, 艾士奇, 申贵男, 等. 木质纤维素的微生物降解[J]. 生物工程学报, 2019, 35(11): 2081-2091.
[31]  Cui, T., Yuan, B., Guo, H., Tian, H., Wang, W., Ma, Y., et al. (2021) Enhanced Lignin Biodegradation by Consortium of White Rot Fungi: Microbial Synergistic Effects and Product Mapping. Biotechnology for Biofuels, 14, Article No. 162.
https://doi.org/10.1186/s13068-021-02011-y
[32]  Wang, W. and Lee, D. (2021) Lignocellulosic Biomass Pretreatment by Deep Eutectic Solvents on Lignin Extraction and Saccharification Enhancement: A Review. Bioresource Technology, 339, Article 125587.
https://doi.org/10.1016/j.biortech.2021.125587
[33]  Yoav, S., Salame, T.M., Feldman, D., Levinson, D., Ioelovich, M., Morag, E., et al. (2018) Effects of Cre1 Modification in the White-Rot Fungus Pleurotus Ostreatus PC9: Altering Substrate Preference during Biological Pretreatment. Biotechnology for Biofuels, 11, Article No. 212.
https://doi.org/10.1186/s13068-018-1209-6
[34]  Zhao, L., Zhang, J., Zhao, D., Jia, L., Qin, B., Cao, X., et al. (2022) Biological Degradation of Lignin: A Critical Review on Progress and Perspectives. Industrial Crops and Products, 188, Article 115715.
https://doi.org/10.1016/j.indcrop.2022.115715
[35]  Monica, P., Ranjan, R. and Kapoor, M. (2024) Lignocellulose-Degrading Chimeras: Emerging Perspectives for Catalytic Aspects, Stability, and Industrial Applications. Renewable and Sustainable Energy Reviews, 199, Article 114425.
https://doi.org/10.1016/j.rser.2024.114425
[36]  Wang, D., Jin, S., Lu, Q. and Chen, Y. (2023) Advances and Challenges in CRISPR/Cas-Based Fungal Genome Engineering for Secondary Metabolite Production: A Review. Journal of Fungi, 9, Article 362.
https://doi.org/10.3390/jof9030362
[37]  Zhang, Y.H. (2017) Biological Pre-Treatment of Soft-Wood Larix Kaempferi Using Three White-Rot Fungi-Corticium Caeruleum, Heterobasidion insulare and Pseudotrametes gibbosa. Fresenius Environmental Bulletin, 26, 4462-4469.
[38]  Liu, Q., Xie, Z., Tang, S., Xie, Q., He, X. and Li, D. (2025) Synthetic Microbial Community Enhances Lignocellulose Degradation during Composting by Assembling Fungal Communities. Bioresource Technology, 419, Article 132068.
https://doi.org/10.1016/j.biortech.2025.132068
[39]  Zhang, W., Guo, Y., Chen, Q., Wang, Y., Wang, Q., Yang, Y., et al. (2025) Metagenomic Insights into the Lignocellulose Degradation Mechanism during Short-Term Composting of Peach Sawdust: Core Microbial Community and Carbohydrate-Active Enzyme Profile Analysis. Environmental Technology & Innovation, 37, Article 103959.
https://doi.org/10.1016/j.eti.2024.103959
[40]  王子苑, 吉玉玉, 舒健虹, 等. 高效木质纤维素分解菌的筛选及复合菌系降解秸秆效果研究[J]. 中国饲料, 2024(15): 19-26.
[41]  赵听, 张凯煜, 谷洁, 等. 复合菌群FWD1的木质纤维素降解特性及其微生物多样性研究[J]. 农业环境科学学报, 2015, 34(8): 1582-1588.
[42]  Suryadi, H., Judono, J.J., Putri, M.R., Eclessia, A.D., Ulhaq, J.M., Agustina, D.N., et al. (2022) Biodelignification of Lignocellulose Using Ligninolytic Enzymes from White-Rot Fungi. Heliyon, 8, e08865.
https://doi.org/10.1016/j.heliyon.2022.e08865
[43]  Cai, S., Li, J., Hu, F.Z., Zhang, K., Luo, Y., Janto, B., et al. (2010) Cellulosilyticum ruminicola, a Newly Described Rumen Bacterium That Possesses Redundant Fibrolytic-Protein-Encoding Genes and Degrades Lignocellulose with Multiple Carbohydrate-Borne Fibrolytic Enzymes. Applied and Environmental Microbiology, 76, 3818-3824.
https://doi.org/10.1128/aem.03124-09
[44]  Sun, Y., Xiong, X., He, M., Xu, Z., Hou, D., Zhang, W., et al. (2021) Roles of Biochar-Derived Dissolved Organic Matter in Soil Amendment and Environmental Remediation: A Critical Review. Chemical Engineering Journal, 424, Article 130387.
https://doi.org/10.1016/j.cej.2021.130387

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133