全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于泰勒公式和遗传算法的函数拟合研究
Study on Function Fitting Based on Taylor Formula and Genetic Algorithm

DOI: 10.12677/aam.2025.145257, PP. 291-298

Keywords: 泰勒公式,遗传算法,函数拟合,进化计算
Taylor Formula
, Genetic Algorithm, Function Fitting, Evolutionary Computation

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于函数表达式绘制函数图像容易实现,但是将数据表述为函数表达式较为困难。在统计学和机器学习中,该问题通常表现为回归建模、插值和参数优化等形式,虽然计算高效,但在非线性复杂数据环境下表现受限。近年来,深度神经网络、进化计算等智能优化方法的引入,为函数拟合提供了更强大的建模能力和优化策略。该研究基于泰勒公式和遗传算法,实现了较好的函数拟合效果。具体来说,泰勒公式可以用函数多项式的形式近似表达函数值,很大程度上简化了函数拟合的难度。遗传算法可以迭代探索函数拟合的最优结果,实现了在较短的时间内获得较优的函数拟合表达式。该研究的方法在线性函数、非线性函数的实验中均取得了有竞争性的优化增益结果。
Drawing function image based on function expression is easy to realize, but it is difficult to express data as function expression. In statistics and machine learning, this problem is usually expressed in the form of regression modeling, interpolation and parameter optimization, which are computationally efficient but limited in nonlinear and complex data environments. In recent years, the introduction of intelligent optimization methods such as deep neural networks and evolutionary computation has provided more powerful modeling capabilities and optimization strategies for function fitting. The study achieves a good function fitting effect based on Taylor formula and genetic algorithm. Specifically, Taylor formula can be used to approximately express function values in the form of function polynomials, which greatly simplifies the difficulty of function fitting. Genetic algorithm can iteratively explore the optimal result of function fitting, and achieve a better function fitting expression in a shorter time. The method of this study achieves competitive optimization gains in both linear and nonlinear functions.

References

[1]  Ignacio, M. and Slater, G.W. (2021) Using Fitting Functions to Estimate the Diffusion Coefficient of Drug Molecules in Diffusion-Controlled Release Systems. Physica A: Statistical Mechanics and Its Applications, 567, Article ID: 125681.
https://doi.org/10.1016/j.physa.2020.125681
[2]  Szabó, B., Pintér, P., Antal, Á., Szlávecz, Á., Chase, J.G. and Benyó, B. (2024) Multi-Dimensional Quantile Regression Using Polynomial Function Fitting for Insulin Sensitivity Forecasting. IFAC-PapersOnLine, 58, 327-331.
https://doi.org/10.1016/j.ifacol.2024.11.058
[3]  Chen, J., Chen, H., Zhao, Y. and Li, X. (2022) Fb-BiGRU: A Deep Learning Model for Ais-Based Vessel Trajectory Curve Fitting and Analysis. Ocean Engineering, 266, Article ID: 112898.
https://doi.org/10.1016/j.oceaneng.2022.112898
[4]  Ziegel, E.R. (2003) The Elements of Statistical Learning. Technometrics, 45, 267-268.
https://doi.org/10.1198/tech.2003.s770
[5]  Tom, A. and Apostol, C. (1967) One-Variable Calculus, with an Introduction to Linear Algebra. Blaisdell Publishing Co.
[6]  Sampson, J.R. (1976) Adaptation in Natural and Artificial Systems (John H. Holland). SIAM Review, 18, 529-530.
https://doi.org/10.1137/1018105
[7]  Liang, J., Cao, H., Lu, Y. and Su, M. (2024) Architecture Search of Accurate and Lightweight CNNs Using Genetic Algorithm. Genetic Programming and Evolvable Machines, 25, Article No. 13.
https://doi.org/10.1007/s10710-024-09484-4
[8]  Smyth, G.K. (2002) Nonlinear Regression. In: Encyclopedia of Environmetrics, Vol. 3, Wiley, 1405-1411.
[9]  Nadaraya, E.A. (1964) On Estimating Regression. Theory of Probability & Its Applications, 9, 141-142.
https://doi.org/10.1137/1109020
[10]  Watson, G.S. (1964) Smooth Regression Analysis. Sankhyā: The Indian Journal of Statistics, Series A, 26, 359-372.
[11]  Bishop, C.M. and Nasrabadi, N.M. (2006) Pattern Recognition and Machine Learning. Springer.
[12]  Vapnik, V. (2013) The Nature of Statistical Learning Theory. Springer Science & Business Media.
[13]  Kennedy, J. and Eberhart, R. (1995) Particle Swarm Optimization. Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, 1942-1948.
https://doi.org/10.1109/icnn.1995.488968
[14]  Lambora, A., Gupta, K. and Chopra, K. (2019) Genetic Algorithm—A Literature Review. 2019 International Conference on Machine Learning, Big Data, Cloud and Parallel Computing (COMITCon), Faridabad, 14-16 February 2019, 380-384.
https://doi.org/10.1109/comitcon.2019.8862255
[15]  周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版社, 1999: 4-6.
[16]  Rooker, T. (1991) Review of Genetic Algorithms in Search, Optimization, and Machine Learning. AI Magazine, 12, 102-103.
https://doi.org/10.1609/aimag.v12i1.889
[17]  濮家程, 段晓慧, 叶阳天, 等. 多点泰勒展开的渐进构造和显式计算及应用[J]. 杭州电子科技大学学报: 自然科学版, 2014, 34(5): 78-81.
[18]  同济大学数学系. 高等数学[M]. 第6版. 北京: 高等教育出版社, 2007: 202-217.
[19]  张海藩. 软件工程导论[M]. 第四版. 北京: 清华大学出版社, 2003: 100-130.
[20]  Sun, Q., Wang, J. and Zhou, X. (2024) A Function Fitting System Based on Genetic Algorithm. In: Jin, H., et al., Eds., Green, Pervasive, and Cloud Computing, Springer, 156-168.
https://doi.org/10.1007/978-981-99-9893-7_12

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133