全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

网格搜索的支持向量机方法在乳腺癌诊断中的应用
Application of Grid Search-Optimized Support Vector Machine in Breast Cancer Diagnosis

DOI: 10.12677/aam.2025.145252, PP. 238-243

Keywords: 乳腺癌诊断,支持向量机,网格搜索,超参数选择,交叉验证
Breast Cancer Diagnosis
, Support Vector Machine, Grid Search, Hyperparameter Selection, Cross-Validation

Full-Text   Cite this paper   Add to My Lib

Abstract:

支持向量机(SVM)作为一种高效的分类模型,其性能在很大程度上取决于超参数的选择。本文利用支持向量机分类原理对乳腺癌诊断问题进行建模分析,采用网格搜索方法和五折交叉验证的方法对SVM的超参数进行优化选择,评估优化后模型的性能。实验结果表明,得到模型的准确率为98.24%、召回率为96.83%、F1分数为0.976、ROC AUC为0.9965。表明采用最优超参数组合的SVM模型在乳腺癌数据集上取得了很好的效果。
As an efficient classification model, the performance of Support Vector Machine (SVM) largely depends on the selection of hyperparameters. This study employs SVM classification principles for modeling and analyzing breast cancer diagnosis problems, utilizing grid search method and five-fold cross-validation to optimize the selection of SVM hyperparameters and evaluate the performance of the optimized model. Experimental results demonstrate that the model achieved an accuracy of 98.24%, recall of 96.83%, F1-score of 0.976, and ROC AUC of 0.9965. The findings indicate that the SVM model with optimal hyperparameter combinations achieved excellent performance on the breast cancer dataset.

References

[1]  尚丹. 基于参数优化的SVM分类器在肺癌早期诊断中的应用[D]: [硕士学位论文]. 郑州: 郑州大学, 2014.
[2]  常小改, 冯爱芬, 范静雅. 基于机器学习的抗乳腺癌候选药物的分类预测[J]. 四川文理学院学报, 2023, 33(2): 54-60.
[3]  何梦. “丁香医生”微信公众号乳腺癌信息传播的框架研究[D]: [硕士学位论文]. 北京: 北京外国语大学, 2022.
[4]  李华, 张伟, 王丽. 乳腺癌早期诊断中多模态影像特征与机器学习算法的结合应用[J]. 中国医学影像技术, 2023, 39(6): 854-859.
[5]  Vapnik, V., Golowich, S.E. and Smola, A. (1996) Support Vector Method for Function Approximation, Regression Estimation, and Signal Processing. Proceedings of the 10th International Conference on Neural Information Processing Systems, Denver, 3-5 December 1996, 281-287.
[6]  Drucker, H., Burges, C.J.C., Kaufman, L., Smola, A. and Vapnik, V. (1996) Support Vector Regression Machines. Proceedings of the 10th International Conference on Neural Information Processing Systems, Denver, 3-5 December 1996, 779-784.
[7]  霍罕妮. 支持向量机中参数选取的一个问题[D]: [硕士学位论文]. 大连: 大连理工大学, 2007.
[8]  丁勇, 秦晓明, 何寒晖. 支持向量机的参数优化及其文本分类中的应用[J]. 计算机仿真, 2010, 27(11): 187-190.
[9]  陈旭东, 许忠平, 童凯, 等. 基于网格搜索优化支持向量机多分类参数识别不同工艺酱酒的应用研究[J]. 中国酿造, 2024, 43(6): 213-217.
[10]  阿里云. 威斯康星乳腺癌数据分析及自动诊断[EB/OL].
https://tianchi.aliyun.com/dataset/106831, 2021-07-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133