|
常微分方程初值问题的区域分解逼近方法
|
Abstract:
本文主要借助拉格朗日插值逼近来求解常微分方程初值问题的近似解,利用插值基函数展开数值解,将问题转化为线性或非线性方程组,对非线性方程组采用不动点迭代法求解。数值实验表明,多区域方法比单区域方法误差更小。
This article mainly uses Lagrangian interpolation approximation to solve the approximation solution of the initial value problem of ordinary differential equations. The numerical solution is expanded by using interpolation basis functions, and the problem is transformed into a system of linear or nonlinear equations. The fixed-point iteration method is used to solve the system of nonlinear equations. Numerical experiments show that the multi-domain method has a smaller error than the single-region method.
[1] | 李焕荣. 随机常微分方程的几种数值求解方法及其应用[J]. 重庆工商大学学报(自然科学版), 2021, 38(6): 82-88. |
[2] | 庄清渠, 王金平. 四阶常微分方程Birkhoff配点法[J]. 华侨大学学报(自然科学版), 2018, 39(2): 306-311. |
[3] | 户永清, 陈正文. 一种二阶常微分方程的数值解法[J]. 四川文理学院学报, 2023, 33(5): 39-44. |
[4] | 唐仁献. Lagrange基本插值多项式的性质及应用[J]. 零陵学院学报, 1995(S1): 49-51. |
[5] | 乔炎, 王川, 王秦. Burgers方程混合问题的Lagrange插值逼近[J]. 应用数学进展, 2022, 11(5): 2507-2514. |
[6] | 李庆扬, 王能超, 易大义. 数值分析[M]. 第5版. 北京: 清华大学出版社, 2001: 1-326. |
[7] | Shen, J., Tang, T. and Wang, L.L. (2011) Spectral Methods: Algorithms, Analysis and Applications. Springer. https://doi.org/10.1007/978-3-540-71041-7 |