全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

三维稳态热传导方程参数反演问题的PINNs解法
PINNs Method for Parameter Inversion Problem of Three-Dimensional Steady-State Heat Conduction Equation

DOI: 10.12677/aam.2025.145250, PP. 218-227

Keywords: 稳态热传导反问题,物理信息神经网络,热传导参数反演,数值计算
Inverse Problem of Steady-State Heat Conduction
, Physical Information Neural Network, Inversion of Heat Conduction Parameters, Numerical Calculation

Full-Text   Cite this paper   Add to My Lib

Abstract:

热传导反问题广泛应用于地球科学、医学等领域,本文基于内嵌物理机理神经网络(PINNs)研究了一类三维有界域上热传导方程参数反演问题的数值解法。构建三维参数辨识模型,提出基于PINNs求解立方体区域三维稳态热传导方程参数反演问题的算法。通过同步反演热传导系数与整体温度值,实现热物性参数的高精度识别。在含噪声数据条件下,热传导系数反演的误差精度控制在104数量级,证实了算法对病态问题具有良好的抗噪性。
Inverse heat conduction problem is widely used in earth science, medicine and other fields. In this paper, based on embedded physical mechanism neural network (PINNs), a numerical method for parameter inversion of heat conduction equation in three-dimensional bounded domain is studied. A three-dimensional parameter identification model is established, and an algorithm based on PINNs is proposed to solve the parameter inversion problem of three-dimensional steady-state heat conduction equation in cube region. Through simultaneous inversion of heat transfer coefficient and global temperature value, high precision identification of thermal physical property parameters is realized. Under the condition of noisy data, the error accuracy of heat transfer coefficient inversion is controlled at the order of 104, which proves that the algorithm has good anti-noise performance for ill-conditioned problems.

References

[1]  薛齐文, 魏伟. 非线性热传导反问题参数辨识[J]. 工程力学, 2010, 27(8): 5-10.
[2]  周焕林, 徐兴盛, 李秀丽, 等. 反演二维瞬态热传导问题随温度变化的导热系数[J]. 应用数学和力学, 2014, 35(12): 1341-1351.
[3]  Mohebbi, F. and Sellier, M. (2016) Parameter Estimation in Heat Conduction Using a Two-Dimensional Inverse Analysis. International Journal for Computational Methods in Engineering Science and Mechanics, 17, 274-287.
https://doi.org/10.1080/15502287.2016.1204034
[4]  Yang, L. and Wang, Z. (2018) Artificial Neural Network (ANN) Modeling of Thermal Conductivity of Supercritical Ethane. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41, 396-404.
https://doi.org/10.1080/15567036.2018.1518358
[5]  吴自库, 李福乐. 一维热传导方程热源反问题基于最小二乘法的正则化方法[J]. 计算物理, 2016, 33(1): 49-56.
[6]  Haznedar, B. and Kalinli, A. (2018) Training ANFIS Structure Using Simulated Annealing Algorithm for Dynamic Systems Identification. Neurocomputing, 302, 66-74.
https://doi.org/10.1016/j.neucom.2018.04.006
[7]  Psichogios, D.C. and Ungar, L.H. (1992) A Hybrid Neural Network‐First Principles Approach to Process Modeling. AIChE Journal, 38, 1499-1511.
https://doi.org/10.1002/aic.690381003
[8]  Lagaris, I.E., Likas, A. and Fotiadis, D.I. (1998) Artificial Neural Networks for Solving Ordinary and Partial Differential Equations. IEEE Transactions on Neural Networks, 9, 987-1000.
https://doi.org/10.1109/72.712178
[9]  Raissi, M., Perdikaris, P. and Karniadakis, G.E. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics, 378, 686-707.
https://doi.org/10.1016/j.jcp.2018.10.045
[10]  Cai, S., Wang, Z., Wang, S., Perdikaris, P. and Karniadakis, G.E. (2021) Physics-Informed Neural Networks for Heat Transfer Problems. Journal of Heat Transfer, 143, Article ID: 060801.
https://doi.org/10.1115/1.4050542
[11]  Rasht‐Behesht, M., Huber, C., Shukla, K. and Karniadakis, G.E. (2022) Physics‐Informed Neural Networks (PINNs) for Wave Propagation and Full Waveform Inversions. Journal of Geophysical Research: Solid Earth, 127, e2021JB023120.
https://doi.org/10.1029/2021jb023120
[12]  陈豪龙, 唐欣越, 柳兆涛, 等. 基于物理信息神经网络的非线性瞬态热传导正/反问题研究[J]. 重庆大学学报, 2024, 47(12): 124-136.
[13]  Lu, L., Jin, P., Pang, G., Zhang, Z. and Karniadakis, G.E. (2021) Learning Nonlinear Operators via DeepONet Based on the Universal Approximation Theorem of Operators. Nature Machine Intelligence, 3, 218-229.
https://doi.org/10.1038/s42256-021-00302-5
[14]  Musgrave, J. and Huang, S.W. (2023) Fourier Domain Physics Informed Neural Network. arXiv: 2310.11459.
[15]  Borate, P., Rivière, J., Marty, S., Marone, C., Kifer, D. and Shokouhi, P. (2024) Physics Informed Neural Network Can Retrieve Rate and State Friction Parameters from Acoustic Monitoring of Laboratory Stick-Slip Experiments. Scientific Reports, 14, Article No. 24624.
https://doi.org/10.1038/s41598-024-75826-y
[16]  Zhang, H. and Liu, J. (2023) Solving an Inverse Source Problem by Deep Neural Network Method with Convergence and Error Analysis. Inverse Problems, 39, Article ID: 075013.
https://doi.org/10.1088/1361-6420/acdaef
[17]  Chanda, S., Balaji, C. and Venkateshan, S.P. (2018) Non-Intrusive Measurement of Thermal Contact Conductance at Polymer-Metal Two Dimensional Annular Interface. Heat and Mass Transfer, 55, 327-340.
https://doi.org/10.1007/s00231-018-2410-7
[18]  Liu, S. and Feng, L. (2020) An Inverse Problem for a Two-Dimensional Time-Fractional Sideways Heat Equation. Mathematical Problems in Engineering, 2020, Article ID: 5865971.
https://doi.org/10.1155/2020/5865971
[19]  Li, Y. and Hu, X. (2022) Artificial Neural Network Approximations of Cauchy Inverse Problem for Linear PDES. Applied Mathematics and Computation, 414, Article ID: 126678.
https://doi.org/10.1016/j.amc.2021.126678
[20]  刘浩洋, 户将, 李勇锋, 等. 最优化: 建模、算法与理论[M]. 北京: 高教出版社, 2020.
[21]  Xiang, Z., Peng, W., Liu, X. and Yao, W. (2022) Self-Adaptive Loss Balanced Physics-Informed Neural Networks. Neurocomputing, 496, 11-34.
https://doi.org/10.1016/j.neucom.2022.05.015

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133