全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

植物多糖生物合成基因调控网络研究进展
Research Progress on the Gene Regulatory Networks for Biosynthesis of Plant Polysaccharides

DOI: 10.12677/br.2025.143018, PP. 151-159

Keywords: 植物多糖,生物合成基因,调控网络,细胞壁,表观遗传
Plant Polysaccharides
, Biosynthetic Genes, Regulatory Networks, Cell Wall, Epigenetics

Full-Text   Cite this paper   Add to My Lib

Abstract:

植物多糖(Plant polysaccharides)是植物细胞壁的重要组成部分,具有抗氧化、抗肿瘤、免疫调节等多种生物活性。近年来,植物多糖在肠道健康、疾病防治以及全球粮食安全等方面的重要性日益凸显。本文综述了植物多糖的主要类型及其合成基因,包括纤维素、半纤维素、果胶和淀粉,并探讨了多糖合成基因的转录调控、激素与环境信号调控以及表观遗传调控机制。通过总结相关研究技术的创新,本文为深入理解植物多糖的生物合成及其在植物生长发育中的作用提供了理论基础,也为未来植物多糖的应用研究提供了参考。
Plant polysaccharides are essential components of plant cell walls and possess various bioactivities, including antioxidant, antitumor, and immune-regulatory properties. In recent years, the significance of plant polysaccharides in gut health, disease prevention, and global food security has become increasingly evident. This review summarizes the major types of plant polysaccharides and their biosynthetic genes, including cellulose, hemicellulose, pectin, and starch. It also explores the transcriptional regulation, hormonal and environmental signal regulation, and epigenetic regulation mechanisms of these biosynthetic genes. By summarizing innovations in related research techniques, this article provides a theoretical basis for understanding the biosynthesis of plant polysaccharides and their roles in plant growth and development, as well as references for future research on the application of plant polysaccharides.

References

[1]  Kumar, M. and Turner, S. (2015) Plant Cellulose Synthesis: CESA Proteins Crossing Kingdoms. Phytochemistry, 112, 91-99.
https://doi.org/10.1016/j.phytochem.2014.07.009
[2]  Pear, J.R., Kawagoe, Y., Schreckengost, W.E., Delmer, D.P. and Stalker, D.M. (1996) Higher Plants Contain Homologs of the Bacterial Cela Genes Encoding the Catalytic Subunit of Cellulose Synthase. Proceedings of the National Academy of Sciences, 93, 12637-12642.
https://doi.org/10.1073/pnas.93.22.12637
[3]  Nawaz, M.A., Lin, X., Chan, T., Imtiaz, M., Rehman, H.M., Ali, M.A., et al. (2019) Characterization of Cellulose Synthase a (CESA) Gene Family in Eudicots. Biochemical Genetics, 57, 248-272.
https://doi.org/10.1007/s10528-018-9888-z
[4]  Qiao, Z., Lampugnani, E.R., Yan, X., Khan, G.A., Saw, W.G., Hannah, P., et al. (2021) Structure of Arabidopsis CESA3 Catalytic Domain with Its Substrate UDP-Glucose Provides Insight into the Mechanism of Cellulose Synthesis. Proceedings of the National Academy of Sciences, 118, e2024015118.
https://doi.org/10.1073/pnas.2024015118
[5]  Ramírez-Rodríguez, E.A. and McFarlane, H.E. (2021) Insights from the Structure of a Plant Cellulose Synthase Trimer. Trends in Plant Science, 26, 4-7.
https://doi.org/10.1016/j.tplants.2020.09.010
[6]  Daras, G., Templalexis, D., Avgeri, F., Tsitsekian, D., Karamanou, K. and Rigas, S. (2021) Updating Insights into the Catalytic Domain Properties of Plant Cellulose synthase (CesA) and Cellulose synthase-like (Csl) Proteins. Molecules, 26, Article 4335.
https://doi.org/10.3390/molecules26144335
[7]  Zhao, H., Li, Z., Wang, Y., Wang, J., Xiao, M., Liu, H., et al. (2021) Cellulose Synthase‐Like Protein OsCSLD4 Plays an Important Role in the Response of Rice to Salt Stress by Mediating Abscisic Acid Biosynthesis to Regulate Osmotic Stress Tolerance. Plant Biotechnology Journal, 20, 468-484.
https://doi.org/10.1111/pbi.13729
[8]  Li, Z., Li, Z., Ji, Y., Wang, C., Wang, S., Shi, Y., et al. (2024) The Heat Shock Factor 20-HSF4-Cellulose Synthase A2 Module Regulates Heat Stress Tolerance in Maize. The Plant Cell, 36, 2652-2667.
https://doi.org/10.1093/plcell/koae106
[9]  Suzuki, S., Li, L., Sun, Y. and Chiang, V.L. (2006) The Cellulose Synthase Gene Superfamily and Biochemical Functions of Xylem-Specific Cellulose Synthase-Like Genes in Populus trichocarpa. Plant Physiology, 142, 1233-1245.
https://doi.org/10.1104/pp.106.086678
[10]  Balakrishnan, S., Bhasker, R., Ramasamy, Y. and Dev, S.A. (2024) Genome-Wide Analysis of Cellulose Synthase Gene Superfamily in Tectona grandis L.f. 3 Biotech, 14, Article No. 86.
https://doi.org/10.1007/s13205-024-03927-6
[11]  Yin, Y., Johns, M.A., Cao, H. and Rupani, M. (2014) A Survey of Plant and Algal Genomes and Transcriptomes Reveals New Insights into the Evolution and Function of the Cellulose Synthase Superfamily. BMC Genomics, 15, Article No. 260.
https://doi.org/10.1186/1471-2164-15-260
[12]  Scheller, H.V. and Ulvskov, P. (2010) Hemicelluloses. Annual Review of Plant Biology, 61, 263-289.
https://doi.org/10.1146/annurev-arplant-042809-112315
[13]  Wilson, L.F.L., Neun, S., Yu, L., Tryfona, T., Stott, K., Hollfelder, F., et al. (2023) The Biosynthesis, Degradation, and Function of Cell Wall β-Xylosylated Xyloglucan Mirrors That of Arabinoxyloglucan. New Phytologist, 240, 2353-2371.
https://doi.org/10.1111/nph.19305
[14]  Yu, L., Wilson, L.F.L., Terrett, O.M., Wurman‐Rodrich, J., Łyczakowski, J.J., Yu, X., et al. (2024) Evolution of Glucuronoxylan Side Chain Variability in Vascular Plants and the Compensatory Adaptations of Cell Wall-Degrading Hydrolases. New Phytologist, 244, 1024-1040.
https://doi.org/10.1111/nph.19957
[15]  Liu, D., Tang, W., Huang, X., Hu, J., Wang, J., Yin, J., et al. (2022) Structural Characteristic of Pectin-Glucuronoxylan Complex from Dolichos lablab L. Hull. Carbohydrate Polymers, 298, Article ID: 120023.
https://doi.org/10.1016/j.carbpol.2022.120023
[16]  Sterling, J.D., Atmodjo, M.A., Inwood, S.E., Kumar Kolli, V.S., Quigley, H.F., Hahn, M.G., et al. (2006) Functional Identification of an Arabidopsis Pectin Biosynthetic Homogalacturonan Galacturonosyltransferase. Proceedings of the National Academy of Sciences, 103, 5236-5241.
https://doi.org/10.1073/pnas.0600120103
[17]  Julian, J.D. and Zabotina, O.A. (2022) Xyloglucan Biosynthesis: From Genes to Proteins and Their Functions. Frontiers in Plant Science, 13, Article 920494.
https://doi.org/10.3389/fpls.2022.920494
[18]  Drula, E., Garron, M., Dogan, S., Lombard, V., Henrissat, B. and Terrapon, N. (2021) The Carbohydrate-Active Enzyme Database: Functions and Literature. Nucleic Acids Research, 50, D571-D577.
https://doi.org/10.1093/nar/gkab1045
[19]  Fu, W., Wang, Z., Liusui, Y., Zhang, X., Han, A., Zhong, X., et al. (2024) Genome-Wide Analysis of the Cotton Cobra-Like Gene Family and Functional Characterization of GhCOBL22 in Relation to Drought Tolerance. BMC Plant Biology, 24, Article No. 1242.
https://doi.org/10.1186/s12870-024-05965-x
[20]  He, C., Wu, K., Zhang, J., Liu, X., Zeng, S., Yu, Z., et al. (2017) Cytochemical Localization of Polysaccharides in Dendrobium officinale and the Involvement of Docsla6 in the Synthesis of Mannan Polysaccharides. Frontiers in Plant Science, 8, Article 173.
https://doi.org/10.3389/fpls.2017.00173
[21]  Wang, Y., Zhao, K., Chen, Y., Wei, Q., Chen, X., Wan, H., et al. (2022) Species-Specific Gene Expansion of the Cellulose synthase Gene Superfamily in the Orchidaceae Family and Functional Divergence of Mannan Synthesis-Related Genes in Dendrobium officinale. Frontiers in Plant Science, 13, Article 777332.
https://doi.org/10.3389/fpls.2022.777332
[22]  Verhertbruggen, Y., Yin, L., Oikawa, A. and Scheller, H.V. (2011) Mannan Synthase Activity in the CSLD Family. Plant Signaling & Behavior, 6, 1620-1623.
https://doi.org/10.4161/psb.6.10.17989
[23]  Xiang, T., Yang, R., Li, L., Lin, H. and Kai, G. (2024) Research Progress and Application of Pectin: A Review. Journal of Food Science, 89, 6985-7007.
https://doi.org/10.1111/1750-3841.17438
[24]  Caffall, K.H. and Mohnen, D. (2009) The Structure, Function, and Biosynthesis of Plant Cell Wall Pectic Polysaccharides. Carbohydrate Research, 344, 1879-1900.
https://doi.org/10.1016/j.carres.2009.05.021
[25]  Zablackis, E., Huang, J., Muller, B., Darvill, A.G. and Albersheim, P. (1995) Characterization of the Cell-Wall Polysaccharides of Arabidopsis Thaliana Leaves. Plant Physiology, 107, 1129-1138.
https://doi.org/10.1104/pp.107.4.1129
[26]  Harholt, J., Suttangkakul, A. and Vibe Scheller, H. (2010) Biosynthesis of Pectin. Plant Physiology, 153, 384-395.
https://doi.org/10.1104/pp.110.156588
[27]  Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V. and Henrissat, B. (2009) The Carbohydrate-Active Enzymes Database (CAZy): An Expert Resource for Glycogenomics. Nucleic Acids Research, 37, D233-D238.
https://doi.org/10.1093/nar/gkn663
[28]  Anderson, C.T. (2016) We Be Jammin’: An Update on Pectin Biosynthesis, Trafficking and Dynamics. Journal of Experimental Botany, 67, 495-502.
https://doi.org/10.1093/jxb/erv501
[29]  Yin, Y., Chen, H., Hahn, M.G., Mohnen, D. and Xu, Y. (2010) Evolution and Function of the Plant Cell Wall Synthesis-Related Glycosyltransferase Family 8. Plant Physiology, 153, 1729-1746.
https://doi.org/10.1104/pp.110.154229
[30]  Mohnen, D. (2008) Pectin Structure and Biosynthesis. Current Opinion in Plant Biology, 11, 266-277.
https://doi.org/10.1016/j.pbi.2008.03.006
[31]  Atmodjo, M.A., Sakuragi, Y., Zhu, X., Burrell, A.J., Mohanty, S.S., Atwood, J.A., et al. (2011) Galacturonosyltransferase (GAUT)1 and GAUT7 Are the Core of a Plant Cell Wall Pectin Biosynthetic Homogalacturonan: Galacturonosyltransferase Complex. Proceedings of the National Academy of Sciences, 108, 20225-20230.
https://doi.org/10.1073/pnas.1112816108
[32]  Wang, L., Wang, W., Wang, Y., Liu, Y., Wang, J., Zhang, X., et al. (2013) Arabidopsis Galacturonosyltransferase (GAUT) 13 and GAUT14 Have Redundant Functions in Pollen Tube Growth. Molecular Plant, 6, 1131-1148.
[33]  Pu, Y., Walley, J.W., Shen, Z., Lang, M.G., Briggs, S.P., Estelle, M., et al. (2019) Quantitative Early Auxin Root Proteomics Identifies GAUT10, a Galacturonosyltransferase, as a Novel Regulator of Root Meristem Maintenance. Molecular & Cellular Proteomics, 18, 1157-1170.
https://doi.org/10.1074/mcp.ra119.001378
[34]  Dash, L., Swaminathan, S., Šimura, J., Gonzales, C.L.P., Montes, C., Solanki, N., et al. (2023) Changes in Cell Wall Composition Due to a Pectin Biosynthesis Enzyme GAUT10 Impact Root Growth. Plant Physiology, 193, 2480-2497.
https://doi.org/10.1093/plphys/kiad465
[35]  de Godoy, F., Bermúdez, L., Lira, B.S., de Souza, A.P., Elbl, P., Demarco, D., et al. (2013) Galacturonosyltransferase 4 Silencing Alters Pectin Composition and Carbon Partitioning in Tomato. Journal of Experimental Botany, 64, 2449-2466.
https://doi.org/10.1093/jxb/ert106
[36]  Xie, H., Ying, R., Tang, Z., Wu, C. and Huang, M. (2023) Effects of Cereal Grain Cell Wall Composition and Structure on Starch Digestion. Journal of the Science of Food and Agriculture, 103, 5831-5838.
https://doi.org/10.1002/jsfa.12666
[37]  Seung, D. (2020) Amylose in Starch: Towards an Understanding of Biosynthesis, Structure and Function. New Phytologist, 228, 1490-1504.
https://doi.org/10.1111/nph.16858
[38]  Pfister, B. and Zeeman, S.C. (2016) Formation of Starch in Plant Cells. Cellular and Molecular Life Sciences, 73, 2781-2807.
https://doi.org/10.1007/s00018-016-2250-x
[39]  Waterschoot, J., Gomand, S.V., Fierens, E. and Delcour, J.A. (2014) Production, Structure, Physicochemical and Functional Properties of Maize, Cassava, Wheat, Potato and Rice Starches. Starch-Stärke, 67, 14-29.
https://doi.org/10.1002/star.201300238
[40]  Brust, H., Orzechowski, S., Fettke, J. and Steup, M. (2013) Starch Synthesizing Reactions and Paths: In Vitro and in Vivo Studies. Journal of Applied Glycoscience, 60, 3-20.
https://doi.org/10.5458/jag.jag.jag-2012_018
[41]  Cheng, J., Khan, M.A., Qiu, W., Li, J., Zhou, H., Zhang, Q., et al. (2012) Diversification of Genes Encoding Granule-Bound Starch Synthase in Monocots and Dicots Is Marked by Multiple Genome-Wide Duplication Events. PLOS ONE, 7, e30088.
https://doi.org/10.1371/journal.pone.0030088
[42]  Dian, W., Jiang, H., Chen, Q., Liu, F. and Wu, P. (2003) Cloning and Characterization of the Granule-Bound Starch Synthase II Gene in Rice: Gene Expression Is Regulated by the Nitrogen Level, Sugar and Circadian Rhythm. Planta, 218, 261-268.
https://doi.org/10.1007/s00425-003-1101-9
[43]  Vrinten, P.L. and Nakamura, T. (2000) Wheat Granule-Bound Starch Synthase I and II Are Encoded by Separate Genes That Are Expressed in Different Tissues. Plant Physiology, 122, 255-264.
https://doi.org/10.1104/pp.122.1.255
[44]  Edwards, A., Vincken, J., Suurs, L.C.J.M., Visser, R.G.F., Zeeman, S., Smith, A., et al. (2002) Discrete Forms of Amylose Are Synthesized by Isoforms of GBSSI in Pea. The Plant Cell, 14, 1767-1785.
https://doi.org/10.1105/tpc.002907
[45]  Wang, L., Liu, L., Wu, H., Li, C., Zhao, H. and Wu, Q. (2023) Evolutionary and Expression Analysis of Starch Synthase Genes from Tartary Buckwheat Revealed the Potential Function of FtGBSSII‐4 and FtGBSSII‐5 in Seed Amylose Biosynthesis. Crop Science, 63, 2925-2940.
https://doi.org/10.1002/csc2.21059
[46]  Xiao, R., Zhang, C., Guo, X., Li, H. and Lu, H. (2021) MYB Transcription Factors and Its Regulation in Secondary Cell Wall Formation and Lignin Biosynthesis during Xylem Development. International Journal of Molecular Sciences, 22, Article 3560.
https://doi.org/10.3390/ijms22073560
[47]  Katiyar, A., Smita, S., Lenka, S.K., Rajwanshi, R., Chinnusamy, V. and Bansal, K.C. (2012) Genome-Wide Classification and Expression Analysis of MYB Transcription Factor Families in Rice and Arabidopsis. BMC Genomics, 13, Article No. 544.
https://doi.org/10.1186/1471-2164-13-544
[48]  Paz-Ares, J., Ghosal, D., Wienand, U., Peterson, P.A. and Saedler, H. (1987) The Regulatory C1 Locus of Zea Mays Encodes a Protein with Homology to MYB Proto-Oncogene Products and with Structural Similarities to Transcriptional Activators. The EMBO Journal, 6, 3553-3558.
https://doi.org/10.1002/j.1460-2075.1987.tb02684.x
[49]  Wang, R., Meng, R., Chen, X. and Meng, Y. (2023) Key Genes for Polysaccharide Synthesis Pathway from Polygonatum Based on WGCNA. Journal of Jishou University (Natural Sciences Edition), 44, 64-71.
[50]  Zhao, S., Mo, L., Li, W., Jiang, L., Meng, Y., Ou, J., et al. (2023) Arginine Methyltransferases PRMT2 and PRMT3 Are Essential for Biosynthesis of Plant-Polysaccharide-Degrading Enzymes in Penicillium oxalicum. PLOS Genetics, 19, e1010867.
https://doi.org/10.1371/journal.pgen.1010867
[51]  Wang, J., Zhang, H., Wang, Y., Meng, S., Liu, Q., Li, Q., et al. (2024) Regulatory Loops between Rice Transcription Factors OsNAC25 and OsNAC20/26 Balance Starch Synthesis. Plant Physiology, 195, 1365-1381.
https://doi.org/10.1093/plphys/kiae139
[52]  Yung, W., Chan, T., Kong, F. and Lam, H. (2023) The Plant Genome Special Section: Epigenome and Epitranscriptome in Plant-Environment Interactions. The Plant Genome, 16, e20404.
https://doi.org/10.1002/tpg2.20404
[53]  Liu, S., He, M., Lin, X. and Kong, F. (2023) Epigenetic Regulation of Photoperiodic Flowering in Plants. The Plant Genome, 16, e20320.
https://doi.org/10.1002/tpg2.20320
[54]  Yang, L., Zhao, X., Tao, Y., Yang, Y. and Li, D. (2025) Comparative Transcriptomics Analysis-Guided Metabolic Engineering Improved Exopolysaccharide Yield by Bacillus subtilis HJ-1 and Its Characteristics. Food Bioscience, 65, Article ID: 106055.
https://doi.org/10.1016/j.fbio.2025.106055
[55]  Lucibelli, F., Valoroso, M.C. and Aceto, S. (2022) Plant DNA Methylation: An Epigenetic Mark in Development, Environmental Interactions, and Evolution. International Journal of Molecular Sciences, 23, Article 8299.
https://doi.org/10.3390/ijms23158299

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133