全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

泵浦振荡器腔长调谐的光纤参量振荡器
Wavelength Tunable Fiber Optical Parametric Oscillator via Cavity Length Tuning of Pump Oscillator

DOI: 10.12677/app.2025.155045, PP. 397-404

Keywords: 腔长调谐,光纤参量振荡器,快速调谐
Cavity Length Tuning
, Fiber Optical Parametric Oscillator, Fast Tuning

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了一种泵浦振荡器腔长调谐的光纤参量振荡器,研究了改变泵浦振荡器的腔长时,光纤参量振荡器输出的波长调谐特性。泵浦振荡器经放大和选频后,为光纤参量振荡器提供泵浦光。当选频比为10、泵浦振荡器的中心波长为1030 nm时,泵浦振荡器的腔长改变0.8 mm,等效于光纤参量振荡器的腔长改变8 mm,在色散滤波的作用下,光纤参量振荡器的波长在748.3~754.9 mm范围内可调谐。当在1030~1040 nm范围内改变泵浦振荡器的中心波长时,采用上述方式,光纤参量振荡器的输出波长在748.3~789.2 nm内可调谐。该方法仅通过改变泵浦振荡器的腔长,就能实现光纤参量振荡器的波长调谐。相比传统改变光纤参量振荡器腔长的方案,泵浦振荡器的腔长改变量仅为原来的选频比分之一,有望用于快速调谐的光纤参量振荡器上。
We introduce a fiber optical parametric oscillator with pump oscillator cavity length tuning and study the wavelength tuning characteristics of the output of the fiber optical parametric oscillator when the cavity length of the pump oscillator is changed. After amplification and frequency selection, the pump oscillator provides pump beam for the fiber optical parametric oscillator. When the frequency ratio is 10 and the center wavelength of the pump oscillator is 1030 nm, the cavity length of the pump oscillator changes by 0.8 mm, which is equivalent to a change of 8 mm in the cavity length of the fiber optical parametric oscillator. Under the effect of dispersion filtering, the wavelength of the fiber optical parametric oscillator can be tuned in the range of 748.3~754.9 mm. When changing the center wavelength of the pump oscillator within the range of 1030~1040 nm, using the above method, the output wavelength of the fiber optical parametric oscillator can be tuned within the range of 748.3~789.2 nm. This method can achieve wavelength tuning of fiber optical parametric oscillators by simply changing the cavity length of the pump oscillator. Compared with the traditional scheme of changing the cavity length of fiber optical parametric oscillators, the cavity length change of pump oscillators is only one of the original frequency selection ratios, which is expected to be used in fast tuning fiber optical parametric oscillators.

References

[1]  Xu, C. and Wise, F.W. (2013) Recent Advances in Fibre Lasers for Nonlinear Microscopy. Nature Photonics, 7, 875-882.
https://doi.org/10.1038/nphoton.2013.284
[2]  Camp Jr, C.H. and Cicerone, M.T. (2015) Chemically Sensitive Bioimaging with Coherent Raman Scattering. Nature Photonics, 9, 295-305.
https://doi.org/10.1038/nphoton.2015.60
[3]  Kong, C., Pilger, C., Kunisch, M., Förster, C., Schulte am Esch, J. and Huser, T. (2023) Hyperspectral Coherent Raman Scattering (CRS) Microscopy Based on a Rapidly Tunable and Environmentally Stable Fiber Laser. Laser & Photonics Reviews, 17, Article 2300521.
https://doi.org/10.1002/lpor.202300521
[4]  李姿霖, 李少伟, 张思鹭, 等. 相干拉曼散射显微技术及其在生物医学领域的应用[J]. 中国激光, 2020, 47(2): 81-91.
[5]  Cheng, J. and Xie, X.S. (2015) Vibrational Spectroscopic Imaging of Living Systems: An Emerging Platform for Biology and Medicine. Science, 350, aaa8870.
https://doi.org/10.1126/science.aaa8870
[6]  郑世凯, 杨康文, 敖建鹏, 等. 光纤式相干拉曼散射成像光源研究进展[J]. 中国激光, 2019, 46(5): 97-107.
[7]  Chemnitz, M., Baumgartl, M., Meyer, T., Jauregui, C., Dietzek, B., Popp, J., et al. (2012) Widely Tuneable Fiber Optical Parametric Amplifier for Coherent Anti-Stokes Raman Scattering Microscopy. Optics Express, 20, 26583-26595.
https://doi.org/10.1364/oe.20.026583
[8]  Gottschall, T., Meyer, T., Baumgartl, M., Dietzek, B., Popp, J., Limpert, J., et al. (2014) Fiber-Based Optical Parametric Oscillator for High Resolution Coherent Anti-Stokes Raman Scattering (CARS) Microscopy. Optics Express, 22, 21921-21928.
https://doi.org/10.1364/oe.22.021921
[9]  Sharping, J.E. (2008) Microstructure Fiber Based Optical Parametric Oscillators. Journal of Lightwave Technology, 26, 2184-2191.
https://doi.org/10.1109/jlt.2008.923274
[10]  Radic, S. (2008) Parametric Amplification and Processing in Optical Fibers. Laser & Photonics Reviews, 2, 498-513.
https://doi.org/10.1002/lpor.200810049
[11]  Gottschall, T., Baumgartl, M., Sagnier, A., Rothhardt, J., Jauregui, C., Limpert, J., et al. (2012) Fiber-Based Source for Multiplex-CARS Microscopy Based on Degenerate Four-Wave Mixing. Optics Express, 20, 12004-12013.
https://doi.org/10.1364/oe.20.012004
[12]  Yuan, J., Zhou, G., Xia, C., Sang, X., Li, F., Yu, C., et al. (2016) Degenerate Four-Wave Mixing-Based Light Source for CARS Microspectroscopy. IEEE Photonics Technology Letters, 28, 763-766.
https://doi.org/10.1109/lpt.2015.2513425
[13]  Baumgartl, M., Chemnitz, M., Jauregui, C., Meyer, T., Dietzek, B., Popp, J., et al. (2012) All-Fiber Laser Source for CARS Microscopy Based on Fiber Optical Parametric Frequency Conversion. Optics Express, 20, 4484-4493.
https://doi.org/10.1364/oe.20.004484
[14]  Brinkmann, M., Janfrüchte, S., Hellwig, T., Dobner, S. and Fallnich, C. (2016) Electronically and Rapidly Tunable Fiber-Integrable Optical Parametric Oscillator for Nonlinear Microscopy. Optics Letters, 41, 2193-2196.
https://doi.org/10.1364/ol.41.002193
[15]  Yang, K., Zheng, S., Wu, Y., Ye, P., Huang, K., Hao, Q., et al. (2018) Low-Repetition-Rate All-Fiber Integrated Optical Parametric Oscillator for Coherent Anti-Stokes Raman Spectroscopy. Optics Express, 26, 17519-17528.
https://doi.org/10.1364/oe.26.017519
[16]  Takahashi, S., Shou, J., Dai, G. and Ozeki, Y. (2022) Fiber Optical Parametric Oscillator with Wide Tuning Range and Fixed Repetition Rate. IEEE Photonics Technology Letters, 34, 1293-1296.
https://doi.org/10.1109/lpt.2022.3212706

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133