全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高回波环境下基于阵列探测的三维计算鬼成像
High-Echo Environment-Based 3D Single-Photon Ghost Imaging via Array Detection

DOI: 10.12677/app.2025.155044, PP. 384-396

Keywords: 三维鬼成像,单光子成像,阵列检测
3D Computational Ghost Imaging
, Single Photon Imaging, Array Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统的单光子三维计算鬼成像(3DSCGI)由于在极低光子通量环境下工作,信噪比(SNR)较低,需要进行大量的重复测量。提高光子通量可以改善这一问题,但会引入堆积效应,导致光子计数直方图与原始脉冲波形相比发生畸变。本研究开发了一种新的单光子三维计算鬼成像技术(3DHCGI),在高回波光子通量下直接计算64*64单光子相机的光子计数和哈达码矩阵之间的二阶相关函数(SOCF),显著提高了信噪比,同时避免了堆积效应的影响。此外,利用哈达码矩阵行中平衡的+1和?1分布,我们采用互补探测进一步降低噪声,同时在每个散斑模式仅探测126次的情况下,完成了39.45 m处场景256*256分辨率的三维重建,横向分辨率达到了7.21 mm,显著提升了成像质量。这项工作对于中远距离高分辨率单光子三维成像具有重要意义,提供了一种高效且高质量的成像方法。
Typical single-photon 3D computational ghost imaging (3DSCGI) suffers from low signal-to-noise ratios (SNR) due to operating in ultra-low photon flux environment, necessitating numerous repetitive measurements. Enhancing photon flux improves this but introduces pile-up effects, distorting photon counts histogram compared with original pulse waveform. Our study develops a new single-photon 3D computational ghost imaging technology (3DHCGI) computing the second-order correlations function (SOCF) between photon counts of 64*64 single photon camera and Hadamard matrix directly under high echoing photon flux, significantly boosting SNR and avoiding pile-up effect based on the pairwise orthogonality of Hadamard matrix. Additionally, leveraging the balanced +1 and ?1 distribution in Hadamard rows, we utilize complementary detection to finish 256*256 3D reconstruction at distance 39.45 m with transverse resolution 7.21 mm and detections of each pattern 126, and further reduce noise and enhance image quality. This work is important for high-resolution single-photon 3D imaging, offering an efficient and high-quality imaging method.

References

[1]  Fang, J., Huang, K., Wu, E., Yan, M. and Zeng, H. (2023) Mid-Infrared Single-Photon 3D Imaging. Light: Science & Applications, 12, Article No. 144.
https://doi.org/10.1038/s41377-023-01179-2
[2]  Gupta, A., Ingle, A. and Gupta, M. (2019) Asynchronous Single-Photon 3D Imaging. 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, 27 October-2 November 2019, 7908-7917.
https://doi.org/10.1109/iccv.2019.00800
[3]  Shin, D., Xu, F., Venkatraman, D., Lussana, R., Villa, F., Zappa, F., et al. (2016) Photon-Efficient Imaging with a Single-Photon Camera. Nature Communications, 7, Article No. 12046.
https://doi.org/10.1038/ncomms12046
[4]  Liu, X., Shi, J., Sun, L., Li, Y., Fan, J. and Zeng, G. (2020) Photon-Limited Single-Pixel Imaging. Optics Express, 28, 8132-8144.
https://doi.org/10.1364/oe.381785
[5]  Edgar, M., Sun, M., Spalding, G., Gibson, G. and Padgett, M. (2016) First-Photon 3D Imaging with a Single-Pixel Camera. Frontiers in Optics 2016, New York, 17-21 October 2016, FF1D-2.
https://doi.org/10.1364/fio.2016.ff1d.2
[6]  Wang, Y., Huang, K., Fang, J., Yan, M., Wu, E. and Zeng, H. (2023) Mid-infrared Single-Pixel Imaging at the Single-Photon Level. Nature Communications, 14, Article No. 173.
https://doi.org/10.1038/s41467-023-36815-3
[7]  Li, Z., Huang, X., Cao, Y., Wang, B., Li, Y., Jin, W., et al. (2020) Single-Photon Computational 3D Imaging at 45 km. Photonics Research, 8, 1532-1540.
https://doi.org/10.1364/prj.390091
[8]  Tan, C., Kong, W., Huang, G., Jia, S., Liu, Q., Han, Q., et al. (2024) Development of a Near-Infrared Single-Photon 3D Imaging Lidar Based on 64 × 64 InGaAs/InP Array Detector and Risley-Prism Scanner. Optics Express, 32, 7426-7447.
https://doi.org/10.1364/oe.514159
[9]  Li, Z., Ye, J., Huang, X., Jiang, P., Cao, Y., Hong, Y., et al. (2021) Single-Photon Imaging over 200 Km. Optica, 8, 344-349.
https://doi.org/10.1364/optica.408657
[10]  Degnan, J. (2016) Scanning, Multibeam, Single Photon Lidars for Rapid, Large Scale, High Resolution, Topographic and Bathymetric Mapping. Remote Sensing, 8, Article 958.
https://doi.org/10.3390/rs8110958
[11]  Pawlikowska, A.M., Halimi, A., Lamb, R.A. and Buller, G.S. (2017) Single-Photon Three-Dimensional Imaging at up to 10 Kilometers Range. Optics Express, 25, 11919-11931.
https://doi.org/10.1364/oe.25.011919
[12]  Sun, M., Edgar, M.P., Gibson, G.M., Sun, B., Radwell, N., Lamb, R., et al. (2016) Single-Pixel Three-Dimensional Imaging with Time-Based Depth Resolution. Nature Communications, 7, Article No. 12010.
https://doi.org/10.1038/ncomms12010
[13]  Chen, J., Gong, W. and Han, S. (2013) Sub-Rayleigh Ghost Imaging via Sparsity Constraints Based on a Digital Micro-Mirror Device. Physics Letters A, 377, 1844-1847.
https://doi.org/10.1016/j.physleta.2013.05.030
[14]  Katkovnik, V. and Astola, J. (2012) Compressive Sensing Computational Ghost Imaging. Journal of the Optical Society of America A, 29, 1556-1567.
https://doi.org/10.1364/josaa.29.001556
[15]  Zhang, H., Xia, Y. and Duan, D. (2021) Computational Ghost Imaging with Deep Compressed Sensing. Chinese Physics B, 30, Article ID: 124209.
https://doi.org/10.1088/1674-1056/ac0042
[16]  Gong, W., Yu, H., Zhao, C., Bo, Z., Chen, M. and Xu, W. (2016) Improving the Imaging Quality of Ghost Imaging Lidar via Sparsity Constraint by Time-Resolved Technique. Remote Sensing, 8, Article 991.
https://doi.org/10.3390/rs8120991
[17]  Gong, W., Zhao, C., Yu, H., Chen, M., Xu, W. and Han, S. (2016) Three-dimensional Ghost Imaging Lidar via Sparsity Constraint. Scientific Reports, 6, Article No. 26133.
https://doi.org/10.1038/srep26133
[18]  Gong, W. and Han, S. (2024) Ghost Imaging Lidar: Principle, Progress and Prospect. Journal of Optics, 26, Article ID: 123001.
https://doi.org/10.1088/2040-8986/ad8147
[19]  Wang, H., Guo, J., Miao, J., Luo, W., Gu, Y., Xie, R., et al. (2021) Emerging Single‐photon Detectors Based on Low‐dimensional Materials. Small, 18, Article ID: 2103963.
https://doi.org/10.1002/smll.202103963
[20]  Buller, G.S. and Collins, R.J. (2009) Single-Photon Generation and Detection. Measurement Science and Technology, 21, Article ID: 012002.
https://doi.org/10.1088/0957-0233/21/1/012002
[21]  Natarajan, C.M., Tanner, M.G. and Hadfield, R.H. (2012) Superconducting Nanowire Single-Photon Detectors: Physics and Applications. Superconductor Science and Technology, 25, Article ID: 063001.
https://doi.org/10.1088/0953-2048/25/6/063001
[22]  Pediredla, A.K., Sankaranarayanan, A.C., Buttafava, M., Tosi, A. and Veeraraghavan, A. (2018) Signal Processing Based Pile-Up Compensation for Gated Single-Photon Avalanche Diodes. arXiv: 1806.07437.
[23]  Arlt, J., Tyndall, D., Rae, B.R., Li, D.D., Richardson, J.A. and Henderson, R.K. (2013) A Study of Pile-Up in Integrated Time-Correlated Single Photon Counting Systems. Review of Scientific Instruments, 84, Article ID: 103105.
https://doi.org/10.1063/1.4824196
[24]  Liu, X., Ma, Y., Li, S., Yang, J., Zhang, Z. and Tian, X. (2021) Photon Counting Correction Method to Improve the Quality of Reconstructed Images in Single Photon Compressive Imaging Systems. Optics Express, 29, 37945-37961.
https://doi.org/10.1364/oe.443084
[25]  Chen, Z., Li, X., Li, X., Ye, G., Zhou, Z., Lu, L., et al. (2019) A Correction Method for Range Walk Error in Time-Correlated Single-Photon Counting Using Photomultiplier Tube. Optics Communications, 434, 7-11.
https://doi.org/10.1016/j.optcom.2018.10.041
[26]  Rapp, J., Ma, Y., Dawson, R.M.A. and Goyal, V.K. (2021) High-Flux Single-Photon Lidar. Optica, 8, 30-39.
https://doi.org/10.1364/optica.403190
[27]  Oh, M.S., Kong, H.J., Kim, T.H., Hong, K.H. and Kim, B.W. (2010) Reduction of Range Walk Error in Direct Detection Laser Radar Using a Geiger Mode Avalanche Photodiode. Optics Communications, 283, 304-308.
https://doi.org/10.1016/j.optcom.2009.10.009
[28]  Xu, L., Zhang, Y., Zhang, Y., Wu, L., Yang, C., Yang, X., et al. (2017) Signal Restoration Method for Restraining the Range Walk Error of Geiger-Mode Avalanche Photodiode Lidar in Acquiring a Merged Three-Dimensional Image. Applied Optics, 56, 3059-3063.
https://doi.org/10.1364/ao.56.003059
[29]  Heide, F., Diamond, S., Lindell, D.B. and Wetzstein, G. (2018) Sub-Picosecond Photon-Efficient 3D Imaging Using Single-Photon Sensors. Scientific Reports, 8, Article No. 17726.
https://doi.org/10.1038/s41598-018-35212-x
[30]  Coates, P.B. (1968) The Correction for Photon ‘Pile-Up’ in the Measurement of Radiative Lifetimes. Journal of Physics E: Scientific Instruments, 1, 878-879.
https://doi.org/10.1088/0022-3735/1/8/437
[31]  Liu, S., Yao, X., Liu, X., Xu, D., Wang, X., Liu, B., et al. (2019) Pile-Up Effect in an Infrared Single-Pixel Compressive Lidar System. Optics Express, 27, 22138-22146.
https://doi.org/10.1364/oe.27.022138
[32]  Hedayat, A. and Wallis, W.D. (1978) Hadamard Matrices and Their Applications. The Annals of Statistics, 6, 1184-1238.
https://doi.org/10.1214/aos/1176344370
[33]  Gong, W. (2023) Disturbance-free Single-Pixel Imaging Camera via Complementary Detection. Optics Express, 31, 30505-30513.
https://doi.org/10.1364/oe.501664
[34]  Hardy, N.D. and Shapiro, J.H. (2010) Ghost Imaging in Reflection: Resolution, Contrast, and Signal-To-Noise Ratio. SPIE Proceedings, 7815, 78150P.
https://doi.org/10.1117/12.863544
[35]  Yang, Y., Shi, J., Cao, F., Peng, J. and Zeng, G. (2015) Computational Imaging Based on Time-Correlated Single-Photon-Counting Technique at Low Light Level. Applied Optics, 54, 9277-9283.
https://doi.org/10.1364/ao.54.009277
[36]  Liu, Y., Shi, J. and Zeng, G. (2016) Single-Photon-Counting Polarization Ghost Imaging. Applied Optics, 55, 10347-10351.
https://doi.org/10.1364/ao.55.010347

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133