全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

探针发射–探针探测型太赫兹近场成像系统
Probe Emission-Probe Detection Type Terahertz Near-Field Imaging System

DOI: 10.12677/app.2025.155043, PP. 374-383

Keywords: 太赫兹近场成像,光电导探针,太赫兹时域光谱
Terahertz Near-Field Imaging
, Photoconductive Probe, Terahertz Time-Domain Spectroscopy

Full-Text   Cite this paper   Add to My Lib

Abstract:

研制了一种采用全光纤耦合光路设计的探针发射–探针探测型太赫兹近场成像系统,其特点在于:系统中的太赫兹辐射源和探测器均采用了探针式光电导天线,这在国内尚属首次报道。测试结果表明:系统的光谱范围覆盖0.1~1.0 THz,动态范围达到45 dB;利用光电导探测探针对光电导发射探针产生的太赫兹波空间场分布进行了微米级高分辨率成像,表明光电导发射探针产生的太赫兹波以近似球面波形式向自由空间传播;将微带线样品靠近光电导发射探针的针尖时,微带线会显著影响太赫兹波在发射探针和探测探针之间的传输模式。本系统为太赫兹频段的超表面器件等相关领域的科学研究提供了一种高效便捷的测量手段。
A probe emission-probe detection type terahertz near-field imaging system with an all-fiber-coupled optical design was developed. The system is characterized by the use of probe-type photoconductive antennas for both the terahertz radiation source and detector, which was reported for the first time domestically. Test results show that the system covers a spectral range of 0.1~1.0 THz with a dynamic range of 45 dB. Used the photoconductive detection probe, high-resolution imaging at the micrometer level was performed on the spatial field distribution of the terahertz waves generated by the photoconductive emission probe, revealing that the terahertz waves propagate in free space in an approximately spherical wave form. When a microstrip line sample was brought close to the tip of the photoconductive emission probe, the microstrip line significantly affected the transmission mode of terahertz waves between the emission probe and the detection probe. This system provides an efficient and convenient measurement tool for scientific research in related fields such as terahertz-frequency metasurface devices.

References

[1]  Němec, H., Kužel, P. and Sundström, V. (2010) Charge Transport in Nanostructured Materials for Solar Energy Conversion Studied by Time-Resolved Terahertz Spectroscopy. Journal of Photochemistry and Photobiology A: Chemistry, 215, 123-139.
https://doi.org/10.1016/j.jphotochem.2010.08.006
[2]  Yakovlev, E.V., Zaytsev, K.I., Chernomyrdin, N.V., Gavdush, A.A., Zotov, A.K., Nikonovich, M.Y., et al. (2016) Non-destructive Testing of Composite Materials Using Terahertz Time-Domain Spectroscopy. SPIE Proceedings, Brussels, 29 April 2016, 201-207.
https://doi.org/10.1117/12.2227321
[3]  Fu, X., Liu, Y., Chen, Q., Fu, Y. and Cui, T.J. (2022) Applications of Terahertz Spectroscopy in the Detection and Recognition of Substances. Frontiers in Physics, 10, Article 869537.
https://doi.org/10.3389/fphy.2022.869537
[4]  Hunsche, S., Koch, M., Brener, I. and Nuss, M.C. (1998) THz Near-Field Imaging. Optics Communications, 150, 22-26.
https://doi.org/10.1016/s0030-4018(98)00044-3
[5]  Wang, X., Ye, J., Sun, W., Han, P., Hou, L. and Zhang, Y. (2022) Terahertz Near-Field Microscopy Based on an Air-Plasma Dynamic Aperture. Light: Science & Applications, 11, Article No. 129.
https://doi.org/10.1038/s41377-022-00822-8
[6]  Wang, X., Cui, Y., Hu, D., Sun, W., Ye, J. and Zhang, Y. (2009) Terahertz Quasi-Near-Field Real-Time Imaging. Optics Communications, 282, 4683-4687.
https://doi.org/10.1016/j.optcom.2009.09.004
[7]  Blanchard, F., Doi, A., Tanaka, T., Hirori, H., Tanaka, H., Kadoya, Y., et al. (2011) Real-Time Terahertz Near-Field Microscope. Optics Express, 19, 8277-8284.
https://doi.org/10.1364/oe.19.008277
[8]  Huber, A.J., Keilmann, F., Wittborn, J., Aizpurua, J. and Hillenbrand, R. (2008) Terahertz Near-Field Nanoscopy of Mobile Carriers in Single Semiconductor Nanodevices. Nano Letters, 8, 3766-3770.
https://doi.org/10.1021/nl802086x
[9]  Maissen, C., Chen, S., Nikulina, E., Govyadinov, A. and Hillenbrand, R. (2019) Probes for Ultrasensitive THz Nanoscopy. ACS Photonics, 6, 1279-1288.
https://doi.org/10.1021/acsphotonics.9b00324
[10]  Cocker, T.L., Jelic, V., Gupta, M., Molesky, S.J., Burgess, J.A.J., Reyes, G.D.L., et al. (2013) An Ultrafast Terahertz Scanning Tunnelling Microscope. Nature Photonics, 7, 620-625.
https://doi.org/10.1038/nphoton.2013.151
[11]  Jelic, V., Iwaszczuk, K., Nguyen, P.H., Rathje, C., Hornig, G.J., Sharum, H.M., et al. (2017) Ultrafast Terahertz Control of Extreme Tunnel Currents through Single Atoms on a Silicon Surface. Nature Physics, 13, 591-598.
https://doi.org/10.1038/nphys4047
[12]  Wächter, M., Nagel, M. and Kurz, H. (2009) Tapered Photoconductive Terahertz Field Probe Tip with Subwavelength Spatial Resolution. Applied Physics Letters, 95, Article 041112.
https://doi.org/10.1063/1.3189702
[13]  Sawallich, S., Globisch, B., Matheisen, C., Nagel, M., Dietz, R.J.B. and Gobel, T. (2016) Photoconductive Terahertz Near-Field Detectors for Operation with 1550-Nm Pulsed Fiber Lasers. IEEE Transactions on Terahertz Science and Technology, 6, 365-370.
https://doi.org/10.1109/tthz.2016.2549365
[14]  Geng, G., Dai, G., Li, D., Zhou, S., Li, Z., Yang, Z., et al. (2018) Imaging Brain Tissue Slices with Terahertz Near‐Field Microscopy. Biotechnology Progress, 35, e2741.
https://doi.org/10.1002/btpr.2741
[15]  Li, Z., Yan, S., Zang, Z., Geng, G., Yang, Z., Li, J., et al. (2020) Single Cell Imaging with Near‐Field Terahertz Scanning Microscopy. Cell Proliferation, 53, e12788.
https://doi.org/10.1111/cpr.12788
[16]  王刚, 曹佳炜, 袁英豪. 全光纤耦合式太赫兹近场探针光谱成像系统[J]. 上海理工大学学报, 2024, 46(5): 539-544.
[17]  https://www.b-thz.com/product/terahertz-near-field-imaging-system-based-on-photoconductive-probe
[18]  Yang, Q., Wang, D., Kruk, S., Liu, M., Kravchenko, I., Han, J., et al. (2022) Topology-Empowered Membrane Devices for Terahertz Photonics. Advanced Photonics, 4, Article 046002.
https://doi.org/10.1117/1.ap.4.4.046002
[19]  TeraSpike Microprobe Series.
https://protemics.com/index.php/products/teraspike-nfm

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133