|
Modern Physics 2025
能带工程改善硫化锑太阳能电池的方法
|
Abstract:
硫化锑(Sb2S3)作为一种低成本、环境友好且带隙可调(1.7~1.8 eV)的光伏材料,在薄膜太阳能电池领域展现出巨大潜力,但其效率受限于载流子迁移率低、界面复合损失及能级失配等问题。本文提出一种基于后硒化处理的能带工程策略,通过硒(Se)原位取代硫(S)形成梯度合金化层,优化Sb2S3的能带结构及界面特性。以半水酒石酸锑钾和五水合硫代硫酸钠为前驱体,采用水热沉积法制备Sb2S3薄膜,并通过硒化退火工艺(350℃)实现能带调控。实验表明,后硒化处理使Sb2S3带隙从1.7 eV降至1.65 eV,导带偏移减少0.05 eV,显著改善了与电子传输层(ETL)的能级匹配,抑制了界面复合。优化后的器件开路电压(VOC)从0.57 V提升至0.64 V,填充因子(FF)从41.06%增至44.81%,短路电流密度(JSC)从10.97 mA·cm?2提高至12.49 mA·cm?2,光电转换效率(PCE)达3.60%,较未处理对照组提升近40%。EQE光谱显示400~700 nm波长范围内光响应显著增强。本研究创新性地通过无掺杂后硒化工艺实现了能带工程调控,为低成本、高效Sb2S3太阳能电池的开发提供了新思路,同时为硫系化合物在叠层电池及柔性光伏中的应用奠定基础。
Antimony sulfide (Sb2S3), as a low-cost, environmentally friendly photovoltaic material with tunable bandgap (1.7~1.8 eV), exhibits significant potential in thin-film solar cells. However, its efficiency is limited by low carrier mobility, interfacial recombination losses, and energy-level mismatch. This study proposes a band engineering strategy based on post-selenization treatment, where selenium (Se) in situ substitutes sulfur (S) to form a gradient alloying layer, thereby optimizing the band structure and interfacial properties of Sb2S3. Sb2S3 thin films were prepared via hydrothermal deposition using potassium antimony tartrate hemihydrate and sodium thiosulfate pentahydrate as precursors, followed by selenization annealing (350?C) for band structure modulation. Experimental results showed that post-selenization reduced the bandgap of Sb2S3 from 1.7 eV to 1.65 eV and decreased the conduction band offset by 0.05 eV, significantly improving energy-level alignment with the electron transport layer (ETL) and suppressing interfacial recombination. The optimized devices achieved an open-circuit voltage (VOC) of 0.64 V (vs. 0.57 V for the control), a fill factor (FF) of 44.81% (vs. 41.06%), a short-circuit current density (JSC) of 12.49 mA·cm?2 (vs. 10.97 mA·cm?2), and a photoelectric conversion efficiency (PCE) of 3.60%, representing a nearly 40% improvement over the untreated group. EQE spectra demonstrated enhanced photoresponse in the 400~700 nm wavelength range. This work innovatively realizes band engineering through a
[1] | Gielen, D., Boshell, F., Saygin, D., Bazilian, M.D., Wagner, N. and Gorini, R. (2019) The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Reviews, 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006 |
[2] | Saga, T. (2010) Advances in Crystalline Silicon Solar Cell Technology for Industrial Mass Production. NPG Asia Materials, 2, 96-102. https://doi.org/10.1038/asiamat.2010.82 |
[3] | Ramanujam, J., Bishop, D.M., Todorov, T.K., Gunawan, O., Rath, J., Nekovei, R., et al. (2020) Flexible CIGS, CdTe and a-Si:H Based Thin Film Solar Cells: A Review. Progress in Materials Science, 110, Article ID: 100619. https://doi.org/10.1016/j.pmatsci.2019.100619 |
[4] | Redlinger, M., Eggert, R. and Woodhouse, M. (2015) Evaluating the Availability of Gallium, Indium, and Tellurium from Recycled Photovoltaic Modules. Solar Energy Materials and Solar Cells, 138, 58-71. https://doi.org/10.1016/j.solmat.2015.02.027 |
[5] | Chen, N., He, Y., Su, Y., Li, X., Huang, Q., Wang, H., et al. (2012) The Cytotoxicity of Cadmium-Based Quantum Dots. Biomaterials, 33, 1238-1244. https://doi.org/10.1016/j.biomaterials.2011.10.070 |
[6] | Yan, J. and Saunders, B.R. (2014) Third-Generation Solar Cells: A Review and Comparison of Polymer: Fullerene, Hybrid Polymer and Perovskite Solar Cells. RSC Advances, 4, 43286-43314. https://doi.org/10.1039/c4ra07064j |
[7] | Billen, P., Leccisi, E., Dastidar, S., Li, S., Lobaton, L., Spatari, S., et al. (2019) Comparative Evaluation of Lead Emissions and Toxicity Potential in the Life Cycle of Lead Halide Perovskite Photovoltaics. Energy, 166, 1089-1096. https://doi.org/10.1016/j.energy.2018.10.141 |
[8] | Kondrotas, R., Chen, C. and Tang, J. (2018) Sb2S3 Solar Cells. Joule, 2, 857-878. https://doi.org/10.1016/j.joule.2018.04.003 |
[9] | Lian, W., Jiang, C., Yin, Y., Tang, R., Li, G., Zhang, L., et al. (2021) Revealing Composition and Structure Dependent Deep-Level Defect in Antimony Trisulfide Photovoltaics. Nature Communications, 12, Article No. 3260. https://doi.org/10.1038/s41467-021-23592-0 |
[10] | Tang, R., Wang, X., Lian, W., Huang, J., Wei, Q., Huang, M., et al. (2020) Hydrothermal Deposition of Antimony Selenosulfide Thin Films Enables Solar Cells with 10% Efficiency. Nature Energy, 5, 587-595. https://doi.org/10.1038/s41560-020-0652-3 |
[11] | Wen, X., Lu, Z., Yang, X., Chen, C., Washington, M.A., Wang, G., et al. (2023) Vertically Aligned One-Dimensional Crystal-Structured Sb2se3 for High-Efficiency Flexible Solar Cells via Regulating Selenization Kinetics. ACS Applied Materials & Interfaces, 15, 22251-22262. https://doi.org/10.1021/acsami.3c01830 |
[12] | Liu, M., Gong, Y., Li, Z., Dou, M. and Wang, F. (2016) A Green and Facile Hydrothermal Approach for the Synthesis of High-Quality Semi-Conducting Sb2S3 Thin Films. Applied Surface Science, 387, 790-795. https://doi.org/10.1016/j.apsusc.2016.06.126 |
[13] | Mo, M., Zhu, Z., Yang, X., Liu, X., Zhang, S., Gao, J., et al. (2003) Growth of Single-Crystal Sb2S3 Nanorods, Dendrites and Straw-Tied-Like Architectures via a Precursor-Solvothermal-Pyrolysis Route. Journal of Crystal Growth, 256, 377-382. https://doi.org/10.1016/s0022-0248(03)01355-1 |
[14] | Capistrán-Martínez, J., Nair, M.T.S. and Nair, P.K. (2021) Silver Antimony Sulfide Selenide Thin‐film Solar Cells via Chemical Deposition. Physica Status Solidi (a), 218, Article ID: 2100058. https://doi.org/10.1002/pssa.202100058 |
[15] | Wang, S., Zhao, Y., Che, B., Li, C., Chen, X., Tang, R., et al. (2022) A Novel Multi‐Sulfur Source Collaborative Chemical Bath Deposition Technology Enables 8%‐Efficiency Sb2S3 Planar Solar Cells. Advanced Materials, 34, Article ID: 2206242. https://doi.org/10.1002/adma.202206242 |
[16] | Yin, Y., Wu, C., Tang, R., Jiang, C., Jiang, G., Liu, W., et al. (2019) Composition Engineering of Sb2S3 Film Enabling High Performance Solar Cells. Science Bulletin, 64, 136-141. https://doi.org/10.1016/j.scib.2018.12.013 |
[17] | Li, J., Gao, Z., Hu, X., Wang, S., Liu, Y., Wang, C., et al. (2022) Defects Passivation via Potassium Iodide Post‐Treatment for Antimony Selenosulfide Solar Cells with Improved Performance. Advanced Functional Materials, 33, Article ID: 2211657. https://doi.org/10.1002/adfm.202211657 |