|
Pure Mathematics 2025
自由跳马氏过程的几何遍历性及其在排队过程中的应用
|
Abstract:
关于马氏过程几何遍历性的研究已有较多成果,但是对于一般状态空间中的马氏过程,关于几何遍历性的判定条件及收敛速率依然具有研究的意义。本文考虑一般状态空间自由跳马氏过程的几何遍历判定条件以及遍历速度,并将结果应用于M/G/1嵌入排队过程,给出了嵌入排队过程几何遍历性的判定条件和遍历速度,并提供了相应的数值验证。
Numerous studies have been conducted on the geometric ergodicity of Markov processes. However, for Markov processes in general state spaces, there still remains significant value in determining the criteria for geometric ergodicity and convergence rates. This paper investigates the geometric ergodicity criteria and convergence rates for skip-free Markov processes in general state spaces. Our results are applied to the embedded M/G/1 process, establishing criterion for geometric ergodicity and explicit convergence rates for this process. Corresponding numerical examples are also presented.
[1] | Harrison, J.M. and Pliska, S.R. (1981) Martingales and Stochastic Integrals in the Theory of Continuous Trading. Stochastic Processes and their Applications, 11, 215-260. https://doi.org/10.1016/0304-4149(81)90026-0 |
[2] | Latouche, G., Jacobs, P.A. and Gaver, D.P. (1984) Finite Markov Chain Models Skip‐Free in One Direction. Naval Research Logistics Quarterly, 31, 571-588. https://doi.org/10.1002/nav.3800310407 |
[3] | Roberts, G.O. and Rosenthal, J.S. (2004) General State Space Markov Chains and MCMC Algorithms. Probability Surveys, 1, 20-71. https://doi.org/10.1214/154957804100000024 |
[4] | Висков, О.В. and Viskov, O.V. (2000) A Random Walk with a Skip-Free Component and the Lagrange Inversion Formula. Theory of Probability & Its Applications, 45, 166-175. https://doi.org/10.4213/tvp330 |
[5] | Bauer, C. (2010) A New Solution Algorithm for Skip-Free Processes to the Left. Cubo (Temuco), 12, 169-187. https://doi.org/10.4067/s0719-06462010000200011 |
[6] | 白晶晶, 李培森, 张余辉, 赵盼. 离散时间单生过程的判别准则[J]. 北京师范大学学报(自然科学版), 2015, 51(3): 227-235. |
[7] | Choi, M.C.H. and Patie, P. (2019) Skip-Free Markov Chains. Transactions of the American Mathematical Society, 371, 7301-7342. https://doi.org/10.1090/tran/7773 |
[8] | 张余辉. 单死过程的稳定性[J]. 中国科学: 数学, 2020, 50(1): 211-230. |
[9] | Meyn, S.P. and Tweedie, R.L. (1993) Markov Chains and Stochastic Stability. Springer. https://doi.org/10.1007/978-1-4471-3267-7 |
[10] | Getoor, R.K. (1980) Transience and Recurrence of Markov Processes. In: Azéma, J. and Yor, M., Eds., Séminaire de Probabilités XIV 1978/79, Springer, 397-409. https://doi.org/10.1007/bfb0089505 |
[11] | Lund, R.B., Meyn, S.P. and Tweedie, R.L. (1996) Computable Exponential Convergence Rates for Stochastically Ordered Markov Processes. The Annals of Applied Probability, 6, 218-237. https://doi.org/10.1214/aoap/1034968072 |
[12] | Tuominen, P. and Tweedie, R.L. (1994) Subgeometric Rates of Convergence of f-Ergodic Markov Chains. Advances in Applied Probability, 26, 775-798. https://doi.org/10.2307/1427820 |
[13] | Zhang, Y. (2018) Criteria on Ergodicity and Strong Ergodicity of Single Death Processes. Frontiers of Mathematics in China, 13, 1215-1243. https://doi.org/10.1007/s11464-018-0722-z |
[14] | Chen, M. (2004) From Markov Chains to Non-Equilibrium Particle Systems. World Scientific Publishing Co. Pte. Ltd. https://doi.org/10.1142/9789812562456 |