|
新型石墨烯润滑油抗磨剂的合成及其在基础润滑油中的性能研究
|
Abstract:
合成酯类基础油三羟甲基丙烷油酸酯(TMPTO)具有优异的润滑性能和多种优异特质,广泛应用于环保液压油、发动机油等抗燃液压油中。为提高TMPTO在复杂工况下的润滑性能,并实现添加工艺简便、成本低廉、合成方法绿色,本研究利用酯化反应合成了两种常用的润滑油添加剂1,6-己二异氰酸酯(HDI)和丙烯酸-2-羟乙酯(HEA)的半封端产物(HDI-HEA),通过化学接枝在石墨烯及其衍生物的表面,制备出了多种功能化改性石墨烯添加剂,其中功能化改性石墨烯(G-HDI-HEA)可作为TMPTO的最佳润滑油添加剂。通过FTIR、XRD、SEM、TEM、Raman、XPS等表征分析证实HDI-HEA成功接枝到石墨烯表面。为了验证不同G-HDI-HEA含量的改良基础润滑油(G-HDI-HEA/TMPTO)的润滑性能,通过四球摩擦试验机测试磨斑直径、摩擦系数确定G-HDI-HEA对TMPTO摩擦性能的影响。结果表明:先合成HDI-HEA后接枝石墨烯的方法可以避免HDI上两个NCO同时连接一个或多个石墨烯,提高石墨烯的扩散性能的同时也减少了石墨烯的团聚。由于采用的一锅串联法无需催化剂,可以减少大量成本和复杂的后处理。当G-HDI-HEA的含量为0.01%时,G-HDI-HEA/TMPTO的磨斑直径减小约27%,最大润滑系数降低10%。
Synthetic ester base oil trimethylolpropane oleate (TMPTO) has excellent lubrication performance and various outstanding characteristics, and is widely used in environmentally friendly hydraulic oils, engine oils, and other fire-resistant hydraulic oils. To improve the lubrication performance of TMPTO base oil under complex working conditions, and to achieve simple addition process, low cost, and green synthesis method. This work utilized a catalyst free esterification reaction to connect two commonly used lubricant additives, 1,6-hexanedioic acid (HDI) and 2-hydroxyethyl acrylate (HEA), into a half sealed end product (HDI-HEA), which was grafted onto the surface of graphene and its derivatives to prepare various functionalized modified graphene additives. Among them, functionalized modified graphene (G-HDI-HEA) can be used as the best lubricant additive for TMPTO base oil. Characterization techniques such as FTIR, XRD, SEM, TEM, Raman, and XPS confirmed the successful grafting of HDI-HEA onto the graphene surface. To evaluate the lubricating performance of the modified base oil (G-HDI-HEA/TMPTO) with varying G-HDI-HEA content, a four-ball friction tester was used to measure the wear scar diameter and friction coefficient, determining the impact of G-HDI-HEA on the frictional properties of TMPTO. The results showed that the method of first synthesizing HDI-HEA and then grafting it onto graphene prevents the two NCOs of HDI from simultaneously bonding to one or multiple graphene sheets, thereby improving graphene dispersion while reducing agglomeration. Additionally, the one-pot tandem method employed requires no catalyst, significantly reducing costs and complex post-processing. When the G-HDI-HEA content was 0.01%, the wear scar diameter of G-HDI-HEA/TMPTO decreased by approximately 27%, and the maximum friction coefficient was reduced by 10%.
[1] | Wu, Y., Li, W. and Wang, X. (2014) Synthesis and Properties of Trimethylolpropane Trioleate as Lubricating Base Oil. Lubrication Science, 27, 369-379. https://doi.org/10.1002/ls.1287 |
[2] | Guimarey, M.J.G., Gonçalves, D.E.P., Liñeira del Río, J.M., Comuñas, M.J.P., Fernández, J. and Seabra, J.H.O. (2021) Lubricant Properties of Trimethylolpropane Trioleate Biodegradable Oil: High Pressure Density and Viscosity, Film Thickness, Stribeck Curves and Influence of Nanoadditives. Journal of Molecular Liquids, 335, Article 116410. https://doi.org/10.1016/j.molliq.2021.116410 |
[3] | Kathamore, P.S. and Bachchhav, B.D. (2021) Tribological Investigations of Trimethylolpropane Trioleate Bio-Based Lubricants. Industrial Lubrication and Tribology, 73, 1074-1083. https://doi.org/10.1108/ilt-05-2021-0157 |
[4] | Lee, C.T., Lee, M.B., Hamdan, S.H., Chong, W.W.F., Chong, C.T., Zhang, H., et al. (2022) Trimethylolpropane Trioleate as Eco-Friendly Lubricant Additive. Engineering Science and Technology, an International Journal, 35, Article 101068. https://doi.org/10.1016/j.jestch.2021.09.014 |
[5] | 山东信发瑞捷新材料科技有限公司. 一种抗磨型三羟甲基丙烷油酸酯基础油[P]. 中国专利, CN202310923156.6. 2024-12-27. |
[6] | 苏州中润超能新材料有限公司. 一种高稳定高抗磨的石墨烯润滑油及其制备方法[P]. 中国专利, CN202410444377.X. 2024-07-16. |
[7] | Liñeira del Río, J.M., Guimarey, M.J.G., Comuñas, M.J.P., López, E.R., Amigo, A. and Fernández, J. (2018) Thermophysical and Tribological Properties of Dispersions Based on Graphene and a Trimethylolpropane Trioleate Oil. Journal of Molecular Liquids, 268, 854-866. https://doi.org/10.1016/j.molliq.2018.07.107 |
[8] | 李春风, 张春雷, 王家鹏. 碳纳米颗粒作为润滑添加剂的摩擦学性能研究[J]. 润滑油, 2018, 33(4): 19-22. |
[9] | 王旭生, 杨胥, 陈春辉, 等. 石墨烯量子点/铁基金属-有机骨架复合材料高效光催化二氧化碳还原[J]. 化学学报, 2022, 80(1): 22-28. |
[10] | Khare, V., Pham, M., Kumari, N., Yoon, H., Kim, C., Park, J., et al. (2013) Graphene-Ionic Liquid Based Hybrid Nanomaterials as Novel Lubricant for Low Friction and Wear. ACS Applied Materials & Interfaces, 5, 4063-4075. https://doi.org/10.1021/am302761c |
[11] | 崔庆生, 乔玉林, 赵海朝, 等. 石墨烯在水中的分散稳定性及其减摩性能研究[J]. 润滑与密封, 2014, 39(5): 47-50, 120. |
[12] | 黄杰, 奚江波, 陈伟, 柏正武. 石墨烯衍生物作为无金属碳基催化剂在有机催化中的应用[J]. 化学学报, 2021, 79(11): 1360-1371. |
[13] | Costa, M.C.F., Marangoni, V.S., Ng, P.R., Nguyen, H.T.L., Carvalho, A. and Castro Neto, A.H. (2021) Accelerated Synthesis of Graphene Oxide from Graphene. Nanomaterials, 11, Article 551. https://doi.org/10.3390/nano11020551 |
[14] | Méndez-Lozano, N., Pérez-Reynoso, F. and González-Gutiérrez, C. (2022) Eco-Friendly Approach for Graphene Oxide Synthesis by Modified Hummers Method. Materials, 15, Article 7228. https://doi.org/10.3390/ma15207228 |
[15] | Pei, S., Wei, Q., Huang, K., Cheng, H. and Ren, W. (2018) Green Synthesis of Graphene Oxide by Seconds Timescale Water Electrolytic Oxidation. Nature Communications, 9, Article No. 145. https://doi.org/10.1038/s41467-017-02479-z |
[16] | 闫绍兵, 焦龙, 何传新, 等. ZIF-67/石墨烯复合物衍生的氮掺杂碳限域Co纳米颗粒用于高效电催化氧还原[J]. 化学学报, 2022, 80(8): 1084-1090. |
[17] | 陆紫嫣, 黄飞, 胡坤宏. 三种碳纳米结构改性基础油的摩擦学性能[J]. 润滑油, 2018, 33(1): 39-45. |
[18] | 赵冬梅, 李振伟, 刘领弟, 等. 石墨烯/碳纳米管复合材料的制备及应用进展[J]. 化学学报, 2014, 72(2): 185-200. |
[19] | 郝冰洁, 宋涛, 黄晓宇, 等. 石墨烯共价修饰中的有机反应[J]. 有机化学, 2020, 40(10): 3279-3288. |
[20] | 宁聪聪, 杨倩, 毛阿敏, 等. 石墨烯纳米带的可控制备研究进展[J]. 化学学报, 2023, 81(4): 406-419. |
[21] | 张乐涛, 吾满江∙艾力, 张亚刚, 等. 油酸改性碳纳米球在季戊四醇油酸酯中的减摩性能研究[J]. 润滑油, 2020, 35(1): 32-36. |
[22] | 刘坪, 唐健, 吴江, 等. 氧化石墨烯的改性及其在矿物油中的摩擦学性能[J]. 摩擦学学报, 2020, 40(1): 30-39. |
[23] | 闫龙龙, 厉晓英, 高洪强. 改性氧化石墨烯对不同种类润滑油的性能影响[J]. 润滑油, 2021, 36(1): 25-29. |
[24] | 黄国家, 陈志刚, 李茂东, 等. 石墨烯和氧化石墨烯的表面功能化改性[J]. 化学学报, 2016, 74(10): 789-799. |
[25] | 张芸秋, 梁勇明, 周建新. 石墨烯掺杂的研究进展[J]. 化学学报, 2014, 72(3): 367-377. |
[26] | 马明昊, 徐明, 刘思金. 氧化石墨烯的表面化学修饰及纳米-生物界面作用机理[J]. 化学学报, 2020, 78(9): 877-887. |
[27] | Luceño-Sánchez, J.A., Maties, G., Gonzalez-Arellano, C. and Diez-Pascual, A.M. (2018) Synthesis and Characterization of Graphene Oxide Derivatives via Functionalization Reaction with Hexamethylene Diisocyanate. Nanomaterials, 8, Article 870. https://doi.org/10.3390/nano8110870 |
[28] | Lin, P., Meng, L., Huang, Y., Liu, L. and Fan, D. (2015) Simultaneously Functionalization and Reduction of Graphene Oxide Containing Isocyanate Groups. Applied Surface Science, 324, 784-790. https://doi.org/10.1016/j.apsusc.2014.11.038 |
[29] | Zheng, F., Jiang, P., Hu, L., Bao, Y. and Xia, J. (2019) Functionalization of Graphene Oxide with Different Diisocyanates and Their Use as a Reinforcement in Waterborne Polyurethane Composites. Journal of Macromolecular Science, Part A, 56, 1071-1081. https://doi.org/10.1080/10601325.2018.1477479 |
[30] | Bai, J., Hu, G., Zhang, J., Liu, B., Cui, J., Hou, X., et al. (2019) Preparation and Rheology of Isocyanate Functionalized Graphene Oxide/thermoplastic Polyurethane Elastomer Nanocomposites. Journal of Macromolecular Science, Part B, 58, 425-441. https://doi.org/10.1080/00222348.2019.1565102 |
[31] | 李守佳, 罗春燕, 陈卫星, 等. 氧化石墨烯接枝聚乙二醇对左旋聚乳酸结晶行为和热稳定性的影响[J]. 材料工程, 2022, 50(8): 99-106. |
[32] | Akram, N., Saeed, M., Usman, M., Mansha, A., Anjum, F., Zia, K.M., et al. (2021) Influence of Graphene Oxide Contents on Mechanical Behavior of Polyurethane Composites Fabricated with Different Diisocyanates. Polymers, 13, Article 444. https://doi.org/10.3390/polym13030444 |
[33] | 仇磊, 陈鼎, 朱莉莉, 等. 氧化石墨烯作为润滑油添加剂的分散稳定性[J]. 材料导报, 2019, 33(16): 2638-2643. |
[34] | Schedin, F., Lidorikis, E., Lombardo, A., Kravets, V.G., Geim, A.K., Grigorenko, A.N., et al. (2010) Surface-Enhanced Raman Spectroscopy of Graphene. ACS Nano, 4, 5617-5626. https://doi.org/10.1021/nn1010842 |
[35] | 吴娟霞, 徐华, 张锦. 拉曼光谱在石墨烯结构表征中的应用[J]. 化学学报, 2014, 72(3): 301-318. |