|
UV固化有机硅改性丙烯酰胺型聚合物的合成及性能研究
|
Abstract:
首先在低温条件下合成N-(3-羟丙基)丙烯酰胺(HPAA),与氯硅烷以简单的方法合成了五种不同结构的丙烯酰胺型有机硅预聚体SPAA。然后在紫外光源下对SPAA进行光固化得到聚合物SPAAP。对预聚体和聚合物通过核磁共振氢谱(1H-NMR)和红外光谱(FT-IR)等方法进行表征。最后对聚合物SPAAP的玻璃化转变温度、交联度、附着力、硬度、耐水性、耐酸碱性和可见光透过率等性能进行测试。结果表明:光固化聚合物SPAAP (1)~(5)的交联度均较高(97~99%),在玻璃化转变温度、交联度、附着力、硬度、耐水性、耐酸碱性和可见光透过率等性能上都表现良好;其中聚合物SPAAP (1)的硬度最高(1H),SPAAP (2)的可见光透过率最高(92%),SPAAP (4)具有最好的耐水性、耐酸碱性,SPAAP (5)的玻璃化转变温度最高(212.01℃)等。
Firstly, N-(3-hydroxypropyl)acrylamide (HPAA) was synthesized under low-temperature conditions, and five acrylamide-type organosilicon prepolymers (SPAA) with different structures were synthesized from HPAA and chlorosilane by a simple method. Then, the SPAA prepolymers were photocured under an ultraviolet light source to obtain the polymers (SPAAP). The prepolymers and polymers were characterized by methods such as proton nuclear magnetic resonance (1H-NMR) and Fourier-transform infrared spectroscopy (FT-IR). Finally, the properties of the polymer SPAAP, including glass transition temperature, crosslinking degree, adhesion, hardness, water resistance, acid and alkali resistance, and visible light transmittance, were tested. The results showed that The photocured polymers SPAAP (1)~(5) all exhibited high crosslinking degrees (97~99%) and demonstrated excellent performance in multiple properties, including glass transition temperature, crosslinking density, adhesion, hardness, water resistance, acid/alkali resistance, and visible light transmittance. Among them, polymer SPAAP (1) had the highest hardness (1H), polymer SPAAP (2) had the highest visible light transmittance (92%), polymer SPAAP (4) had the best water resistance and acid-alkali resistance, and polymer SPAAP (5) had the highest glass transition temperature (212.01?C).
[1] | Huang, S., Huang, H., Liu, X. and Xiang, H. (2024) Free-Radical/Cationic Hybrid UV-Curable Silicone Resin for Age-Resistant Coatings. Industrial & Engineering Chemistry Research, 63, 14657-14667. https://doi.org/10.1021/acs.iecr.4c01943 |
[2] | Zhang, W., Wang, R., Yang, Z., Bai, Y., Meng, L. and Wang, Y. (2023) Synthesis of UV Rapid Curing Silicone Coatings via Photoinitiated Thiol-Ene Click Polymerization for Pressure-Sensitive Adhesive. Polymer, 283, Article ID: 126222. https://doi.org/10.1016/j.polymer.2023.126222 |
[3] | Liu, F., Liu, A., Tao, W. and Yang, Y. (2020) Preparation of UV Curable Organic/inorganic Hybrid Coatings—A Review. Progress in Organic Coatings, 145, Article ID: 105685. https://doi.org/10.1016/j.porgcoat.2020.105685 |
[4] | Wang, Q., Thomas, J. and Soucek, M.D. (2023) Investigation of UV-Curable Alkyd Coating Properties. Journal of Coatings Technology and Research, 20, 545-557. https://doi.org/10.1007/s11998-022-00697-9 |
[5] | Deng, J., Kong, R., Liu, Z., Weng, Y. and Fan, L. (2023) Preparation of Fluorescent UV-Curable Adhesives Containing Aiegen-Modified Monomer. Dyes and Pigments, 220, Article ID: 111761. https://doi.org/10.1016/j.dyepig.2023.111761 |
[6] | Wan, Z., Zhang, H., Niu, M., Zhang, W., Guo, Y. and Li, H. (2024) Development of Lignin-Derived UV-Curable Resin for DLP 3D Printing. Industrial Crops and Products, 221, Article ID: 119243. https://doi.org/10.1016/j.indcrop.2024.119243 |
[7] | Liu, W., Tian, P., Huang, Y. and Zhang, J. (2022) A Novel UV-Curable Epoxy Resin Modified with Cholic Acid for High-Frequency Dielectric Packaging. Progress in Organic Coatings, 167, Article ID: 106849. https://doi.org/10.1016/j.porgcoat.2022.106849 |
[8] | 李大强. 聚丙烯酰胺的应用进展[J]. 广东化工, 2022, 49(17): 90-91, 86. |
[9] | Lin, C., Zhang, J., Wang, L., Zheng, J., Xu, F., Zhou, J., et al. (2013) Study on Fouling-Resistant Performance Improvement of Silicone-Based Coating with Poly(Acrylamide-Silicone). International Journal of Electrochemical Science, 8, 6478-6492. https://doi.org/10.1016/s1452-3981(23)14778-x |
[10] | Zhang, Z., Zhao, X., Su, Y., Xing, D. and Han, X. (2017) Fabrication of Vinyl Organosilicon @poly-N, N’-[(4, 5-Dihydroxy-1, 2-Phenylene)bis(Methylene)]Bisacrylamide) Core@Shell Antibacterial Agent. Materials Science and Engineering: C, 77, 624-629. https://doi.org/10.1016/j.msec.2017.04.001 |
[11] | Joo, J. and Jang, J. (2018) Acrylamide-Assisted Photografting of Bisacrylamide Dyes onto Cotton. Fibers and Polymers, 19, 782-789. https://doi.org/10.1007/s12221-018-7718-x |
[12] | Rodrigues, S.B., Petzhold, C.L., Gamba, D., Leitune, V.C.B. and Collares, F.M. (2018) Acrylamides and Methacrylamides as Alternative Monomers for Dental Adhesives. Dental Materials, 34, 1634-1644. https://doi.org/10.1016/j.dental.2018.08.296 |
[13] | 杨德桢, 孙传强, 韩哲, 等. 分子间相互作用调控丝素蛋白/聚丙烯酰胺水凝胶的网络形貌和β片结晶, 赋予水凝胶优异的黏附、应变和传感性能[J]. 中国科学: 材料科学(英文版), 2024, 67(5): 1533-1542. |
[14] | 何文峰, 赵彤杰, 谢于, 等. 耐高温含氢乙烯基有机硅树脂的合成及改性[J]. 中国塑料, 2025, 39(1): 31-36. |
[15] | Rustoy, E.M. and Baldessari, A. (2006) Chemoselective Enzymatic Preparation of N-Hydroxyalkylacrylamides, Monomers for Hydrophilic Polymer Matrices. Journal of Molecular Catalysis B: Enzymatic, 39, 50-54. https://doi.org/10.1016/j.molcatb.2006.01.026 |
[16] | 李晶, 曹碧辉, 李施扬, 等. GB/T 1728-2020漆膜、腻子膜干燥时间测定法[S]. 北京: 中国标准出版社, 2020. |
[17] | 肖桃云, 杨小武, 杨斌, 等. GB/T 36965-2018光伏组件用乙烯-醋酸乙烯共聚物交联度测试方法 差示扫描量热法[S]. 北京: 中国标准出版社, 2018. |
[18] | 陈刚, 何汶华, 徐芸莉, 等. GB/T 9286-2021色漆和清漆 漆膜的划格试验[S]. 北京: 中国标准出版社, 2021. |
[19] | 陈刚, 王崇武, 彭菊芳, 等. GB/T 6739-2022色漆和清漆 铅笔法测定漆膜硬度[S]. 北京: 中国标准出版社, 2022. |
[20] | 西北油漆厂. GB/T 1733-1993漆膜耐水性测定法[S]. 北京: 中国标准出版社, 1993. |
[21] | 西北油漆总厂. GB/T 9274-1988色漆和清漆 耐液体介质的测定[S]. 北京: 中国标准出版社, 1988. |
[22] | Pan, Y., Yang, B., Jia, N., Yu, Y., Xu, X., Wang, Y., et al. (2021) Enhanced Thermally Conductive and Thermomechanical Properties of Polymethyl Methacrylate (PMMA)/Graphene Nanoplatelets (GNPs) Nanocomposites for Radiator of Electronic Components. Polymer Testing, 101, Article ID: 107237. https://doi.org/10.1016/j.polymertesting.2021.107237 |