全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TAD-吲哚加合物的合成及其动态可逆性反应研究
Synthesis and Study of the Dynamic Reversible Reaction of TAD-Indole Adducts

DOI: 10.12677/aac.2025.152020, PP. 199-210

Keywords: TAD,吲哚,TAD-吲哚加合物,动态可逆反应
TAD
, Indole, TAD-Indole Adducts, Dynamic Reversible Reaction

Full-Text   Cite this paper   Add to My Lib

Abstract:

三唑啉二酮(TAD)-吲哚加合物作为一种重要的TAD等价物,其内含动态可逆的C-N键,可以条件可控地释放高活性的TAD,这一特性使其在生物标记、材料表面修饰和聚合物合成等领域展现出广阔的应用前景。
Triazolinedione (TAD)-indole adducts, serving as an important TAD equivalent, contain dynamic and reversible C-N bonds that can conditionally release highly reactive TAD. This characteristic endows them with broad application prospects in the fields of bio-labeling, material surface modification, and polymer synthesis.

References

[1]  Jin, Y., Wang, Q., Taynton, P. and Zhang, W. (2014) Dynamic Covalent Chemistry Approaches toward Macrocycles, Molecular Cages, and Polymers. Accounts of Chemical Research, 47, 1575-1586.
https://doi.org/10.1021/ar500037v
[2]  Jin, Y., Yu, C., Denman, R.J. and Zhang, W. (2013) Recent Advances in Dynamic Covalent Chemistry. Chemical Society Reviews, 42, 6634-6654.
https://doi.org/10.1039/c3cs60044k
[3]  Rowan, S.J., Cantrill, S.J., Cousins, G.R.L., Sanders, J.K.M. and Stoddart, J.F. (2002) Dynamic Covalent Chemistry. Angewandte Chemie International Edition, 41, 898-952.
https://doi.org/10.1002/1521-3773(20020315)41:6<898::aid-anie898>3.0.co;2-e
[4]  Maes, S., Badi, N., Winne, J.M. and Du Prez, F.E. (2025) Taking Dynamic Covalent Chemistry Out of the Lab and into Reprocessable Industrial Thermosets. Nature Reviews Chemistry, 9, 144-158.
https://doi.org/10.1038/s41570-025-00686-7
[5]  Billiet, S., De Bruycker, K., Driessen, F., Goossens, H., Van Speybroeck, V., Winne, J.M., et al. (2014) Triazolinediones Enable Ultrafast and Reversible Click Chemistry for the Design of Dynamic Polymer Systems. Nature Chemistry, 6, 815-821.
https://doi.org/10.1038/nchem.2023
[6]  Baran, P.S., Guerrero, C.A. and Corey, E.J. (2003) The First Method for Protection-Deprotection of the Indole 2, 3-π Bond. Organic Letters, 5, 1999-2001.
https://doi.org/10.1021/ol034634x
[7]  Du, M., Houck, H.A., Yin, Q., Xu, Y., Huang, Y., Lan, Y., et al. (2022) Force-Reversible Chemical Reaction at Ambient Temperature for Designing Toughened Dynamic Covalent Polymer Networks. Nature Communications, 13, Article No. 3231.
https://doi.org/10.1038/s41467-022-30972-7
[8]  Mondal, P., Jana, G., Pal, T.S., Chattaraj, P.K. and Singha, N.K. (2021) Self-Healable Functional Polymers Based on Diels-Alder ‘Click Chemistry’ Involving Substituted Furan and Triazolinedione Derivatives: A Simple and Very Fast Approach. Polymer Chemistry, 12, 6283-6290.
https://doi.org/10.1039/d1py00910a
[9]  Defize, T., Riva, R., Thomassin, J., Alexandre, M., Herck, N.V., Prez, F.D., et al. (2016) Reversible TAD Chemistry as a Convenient Tool for the Design of (re)processable PCL‐Based Shape‐Memory Materials. Macromolecular Rapid Communications, 38, Article ID: 1600517.
https://doi.org/10.1002/marc.201600517
[10]  He, M., Li, J., Xu, J., Wu, L., Li, N. and Zhang, S. (2024) Dynamic Recyclable High-Performance Epoxy Resins via Triazolinedione-Indole Click Reaction and Cation-π Interaction Synergistic Crosslinking. Polymers, 16, Article 1900.
https://doi.org/10.3390/polym16131900
[11]  Thiele, J. and Stange, O. (1894) Ueber Semicarbazid. Justus Liebigs Annalen der Chemie, 283, 1-46.
https://doi.org/10.1002/jlac.18942830102
[12]  Cookson, R.C., Gilani, S.S.H. and Stevens, I.D.R. (1962) 4-Phenyl-1, 2, 4-Triazolin-3, 5-Dione: A Powerful Dienophile. Tetrahedron Letters, 3, 615-618.
https://doi.org/10.1016/s0040-4039(00)70917-8
[13]  Cookson, R.C., Gilani, S.S.H. and Stevens, I.D.R. (1967) Diels-alder Reactions of 4-Phenyl-1, 2, 4-Triazoline-3, 5-Dione. Journal of the Chemical Society C: Organic, 1967, 1905-1909.
https://doi.org/10.1039/j39670001905
[14]  Kawai, K., Ikeda, K., Sato, A., Kabasawa, A., Kojima, M., Kokado, K., et al. (2022) 1, 2-Disubstituted 1, 2-Dihydro-1, 2, 4, 5-Tetrazine-3, 6-Dione as a Dynamic Covalent Bonding Unit at Room Temperature. Journal of the American Chemical Society, 144, 1370-1379.
https://doi.org/10.1021/jacs.1c11665
[15]  De Bruycker, K., Billiet, S., Houck, H.A., Chattopadhyay, S., Winne, J.M. and Du Prez, F.E. (2016) Triazolinediones as Highly Enabling Synthetic Tools. Chemical Reviews, 116, 3919-3974.
https://doi.org/10.1021/acs.chemrev.5b00599
[16]  Roy, N. and Lehn, J. (2011) Dynamic Covalent Chemistry: A Facile Room‐Temperature, Reversible, Diels-Alder Reaction between Anthracene Derivatives and n‐Phenyltriazolinedione. ChemistryAn Asian Journal, 6, 2419-2425.
https://doi.org/10.1002/asia.201100244
[17]  Southgate, E.H., Pospech, J., Fu, J., Holycross, D.R. and Sarlah, D. (2016) Dearomative Dihydroxylation with Arenophiles. Nature Chemistry, 8, 922-928.
https://doi.org/10.1038/nchem.2594
[18]  Kumar Raut, S., Sarkar, S., Mondal, P., Meldrum, A. and Singha, N.K. (2023) Covalent Adaptable Network in an Anthracenyl Functionalised Non-Olefinic Elastomer; a New Class of Self-Healing Elastomer Coupled with Fluorescence Switching. Chemical Engineering Journal, 453, Article ID: 139641.
https://doi.org/10.1016/j.cej.2022.139641
[19]  Kuroda, Y., Krell, M., Kurokawa, K. and Takasu, K. (2024) Synthesis of Mesoionic Triazolones via a Formal [3 + 2] Cycloaddition between 4-Phenyl-1, 2, 4-Triazoline-3, 5-Dione and Alkynes. Chemical Communications, 60, 1719-1722.
https://doi.org/10.1039/d3cc05088b
[20]  Breton, G.W. (2011) Acid-Catalyzed Reaction of 4-Methyl-1, 2, 4-Triazoline-3, 5-Dione (MeTAD) with Substituted Benzenes. Tetrahedron Letters, 52, 733-735.
https://doi.org/10.1016/j.tetlet.2010.12.024
[21]  Ban, H., Gavrilyuk, J. and Barbas, C.F. (2010) Tyrosine Bioconjugation through Aqueous Ene-Type Reactions: A Click-Like Reaction for Tyrosine. Journal of the American Chemical Society, 132, 1523-1525.
https://doi.org/10.1021/ja909062q
[22]  Ban, H., Nagano, M., Gavrilyuk, J., Hakamata, W., Inokuma, T. and Barbas, C.F. (2013) Facile and Stabile Linkages through Tyrosine: Bioconjugation Strategies with the Tyrosine-Click Reaction. Bioconjugate Chemistry, 24, 520-532.
https://doi.org/10.1021/bc300665t
[23]  Yang, J., Zhang, J., Bao, W., Qiu, S., Li, S., Xiang, S., et al. (2021) Chiral Phosphoric Acid-Catalyzed Remote Control of Axial Chirality at Boron–carbon Bond. Journal of the American Chemical Society, 143, 12924-12929.
https://doi.org/10.1021/jacs.1c05079
[24]  Kiselev, V.D., Kornilov, D.A., Kashaeva, H.A., Potapova, L.N. and Konovalov, A.I. (2014) 4‐Phenyl‐1, 2, 4‐Triazoline‐3, 5‐Dione in the Ene Reactions with Cyclohexene, 1‐Hexene and 2, 3‐Dimethyl‐2‐Butene. The Heat of Reaction and the Influence of Temperature and Pressure on the Reaction Rate. Journal of Physical Organic Chemistry, 27, 401-406.
https://doi.org/10.1002/poc.3277
[25]  Kuroda, Y. (2022) Remarkable Solvent Effect of Fluorinated Alcohols on Azo-Ene Reactions. Chemical and Pharmaceutical Bulletin, 70, 359-361.
https://doi.org/10.1248/cpb.c22-00076
[26]  Houck, H. (2020) Light and Temperature Triggered Triazolinedione Reactivity for On-Demand Bonding and Debonding of Polymer Systems. Karlsruher Institut für Technologie (KIT).
[27]  Chehardoli, G., Zolfigol, M.A., Ghaemi, E., Madrakian, E., Niknam, K. and Mallakpour, S. (2012) N2O4 Chemisorbed Onto n‐Propylsilica Kryptofix 21 and Kriptofix 22 as Two New Functional Polymers for the Fast Oxidation of Urazoles and 1, 4‐Dihydropyridines. Journal of Heterocyclic Chemistry, 49, 596-599.
https://doi.org/10.1002/jhet.828

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133