全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

炔烃官能团化反应
Alkyne Functionalization Reaction

DOI: 10.12677/aac.2025.152018, PP. 179-185

Keywords: 金属催化,炔烃,官能团化
Metal Catalysis
, Alkyne, Functionalization

Full-Text   Cite this paper   Add to My Lib

Abstract:

炔烃的官能团化反应作为现代有机合成化学的核心研究领域之一,在功能分子构筑和先进材料制备方面具有重要的应用价值。该反应体系通过精准构建碳–碳键及碳–杂原子键,为复杂有机分子的高效合成提供了重要的方法学基础。根据现有研究报道,过渡金属催化体系凭借其优异的区域和立体选择性,在天然产物全合成中展现出独特优势。
The functionalization of alkynes, as one of the central research areas in modern organic synthetic chemistry, holds significant application value in the construction of functional molecules and the preparation of advanced materials. This reaction system provides a crucial methodological foundation for the efficient synthesis of complex organic molecules through the precise formation of carbon-carbon and carbon-heteroatom bonds. According to existing research reports, transition metal catalytic systems exhibit unique advantages in the total synthesis of natural products due to their exceptional regioselectivity and stereoselectivity.

References

[1]  Zhou, C., Dong, Y., Yu, J., Sun, S. and Cheng, J. (2019) Palladium/Copper-Catalyzed Multicomponent Reactions of Propargylic Amides, Halohydrocarbons and CO2 toward Functionalized Oxazolidine-2,4-diones. Chemical Communications, 55, 13685-13688.
https://doi.org/10.1039/c9cc07027c
[2]  Guo, S., AbuSalim, D.I. and Cook, S.P. (2019) 1,2‐(Bis)trifluoromethylation of Alkynes: A One‐Step Reaction to Install an Underutilized Functional Group. Angewandte Chemie International Edition, 58, 11704-11708.
https://doi.org/10.1002/anie.201905247
[3]  Lin, G., Li, C., Hung, S. and Liu, R. (2008) Diversity in Gold-and Silver-Catalyzed Cycloisomerization of Epoxide-Alkyne Functionalities. Organic Letters, 10, 5059-5062.
https://doi.org/10.1021/ol802047g
[4]  Rivera‐Chao, E. and Fañanás‐Mastral, M. (2018) Synthesis of Stereodefined Borylated Dendralenes through Copper‐catalyzed Allylboration of Alkynes. Angewandte Chemie International Edition, 57, 9945-9949.
https://doi.org/10.1002/anie.201806334
[5]  Chaves‐Pouso, A., Álvarez‐Constantino, A.M. and Fañanás‐Mastral, M. (2022) Frontispiece: Enantio‐ and Diastereoselective Copper‐Catalyzed Allylboration of Alkynes with Allylic gem‐Dichlorides. Angewandte Chemie International Edition, 61, e202117696.
https://doi.org/10.1002/anie.202282361
[6]  Chen, H., Chen, Y., Tang, X., Liu, S., Wang, R., Hu, T., et al. (2019) Rhodium‐Catalyzed Reaction of Silacyclobutanes with Unactivated Alkynes to Afford Silacyclohexenes. Angewandte Chemie International Edition, 58, 4695-4699.
https://doi.org/10.1002/anie.201814143
[7]  Till, N.A., Smith, R.T. and MacMillan, D.W.C. (2018) Decarboxylative Hydroalkylation of Alkynes. Journal of the American Chemical Society, 140, 5701-5705.
https://doi.org/10.1021/jacs.8b02834
[8]  Zhu, Z., Tu, J. and Liu, F. (2019) Ni-Catalyzed Deaminative Hydroalkylation of Internal Alkynes. Chemical Communications, 55, 11478-11481.
https://doi.org/10.1039/c9cc05385a
[9]  Lyu, X., Zhang, J., Kim, D., Seo, S. and Chang, S. (2021) Merging NiH Catalysis and Inner-Sphere Metal-Nitrenoid Transfer for Hydroamidation of Alkynes. Journal of the American Chemical Society, 143, 5867-5877.
https://doi.org/10.1021/jacs.1c01138
[10]  Zhan, Y., Meng, H. and Shu, W. (2022) Rapid Access to t-Butylalkylated Olefins Enabled by Ni-Catalyzed Intermolecular Regio-and trans-Selective Cross-Electrophile t-Butylalkylation of Alkynes. Chemical Science, 13, 4930-4935.
https://doi.org/10.1039/d2sc00487a
[11]  Li, W., Hu, M., Xiong, J., Zhang, X. and Zhu, S. (2022) Iron-Catalysed Hydroalumination of Internal Alkynes. Chemical Science, 13, 7873-7879.
https://doi.org/10.1039/d2sc02160a
[12]  Wang, W., Huang, Q., Jin, Y., Zhou, Q. and Zhu, S. (2023) Iron‐Catalyzed Alkenylzincation of Internal Alkynes. Chinese Journal of Chemistry, 41, 3547-3552.
https://doi.org/10.1002/cjoc.202300356
[13]  Liu, L., Dong, J., Fu, Z., Su, L., Wu, S., Shang, Q., et al. (2022) Specific Cross-Dimerization of Terminal Alkynes via Pd/Tmeda Catalysis. Science China Chemistry, 65, 2487-2493.
https://doi.org/10.1007/s11426-022-1388-5
[14]  Wang, Z., Chen, Y., Zhang, H., Sun, Z., Zhu, C. and Ye, L. (2020) Ynamide Smiles Rearrangement Triggered by Visible-Light-Mediated Regioselective Ketyl-Ynamide Coupling: Rapid Access to Functionalized Indoles and Isoquinolines. Journal of the American Chemical Society, 142, 3636-3644.
https://doi.org/10.1021/jacs.9b13975
[15]  Cheng, T., Zhao, Q., Zhang, D. and Liu, G. (2015) Transition-Metal-Functionalized Ordered Mesoporous Silicas: An Overview of Sustainable Chiral Catalysts for Enantioselective Transformations. Green Chemistry, 17, 2100-2122.
https://doi.org/10.1039/c4gc02204a
[16]  Devaraj, N.K., Thurber, G.M., Keliher, E.J., Marinelli, B. and Weissleder, R. (2012) Reactive Polymer Enables Efficient in Vivo Bioorthogonal Chemistry. Proceedings of the National Academy of Sciences, 109, 4762-4767.
https://doi.org/10.1073/pnas.1113466109

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133