全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多模态表征与认知负荷理论的数学分析可视化教学案例设计与实践探索
Design and Practical Exploration of Visualized Teaching Cases in Mathematical Analysis Based on Multimodal Representation and Cognitive Load Theories

DOI: 10.12677/ae.2025.155840, PP. 831-840

Keywords: 数学分析,可视化教学,教学案例,多模态表征,认知负荷,教学改革
Mathematical Analysis
, Visualized Instruction, Teaching Cases, Multimodal Representation, Cognitive Load, Instructional Reform

Full-Text   Cite this paper   Add to My Lib

Abstract:

文章基于多模态表征理论、认知负荷理论和建构主义学习理论,构建了数学分析可视化教学的理论框架,并设计了两个典型教学案例,分别针对函数极限的ε-δ定义和定积分概念。通过整合GeoGebra等动态可视化技术,探讨如何在保持数学严谨性的同时提升教学直观性,帮助学生完成从直观认知到形式化理解的思维过渡。可视化教学能够显著降低抽象概念的认知负荷,促进学生对数学概念的深度理解。本研究为数学分析教学改革提供了创新路径,对推动数学教育创新发展具有参考价值。
Based on multimodal representation theory, cognitive load theory, and constructivist learning theory, a theoretical framework for visualized instruction in mathematical analysis was constructed. Two representative teaching cases were designed, focusing on the ε-δ definition of function limits and the concept of definite integrals. By integrating dynamic visualization technologies such as GeoGebra, this study explores how to enhance instructional intuitiveness while preserving mathematical rigor, thereby facilitating students’ cognitive transition from intuitive understanding to formalized comprehension. Visualized instruction significantly reduces the cognitive load of abstract concepts and promotes students’ deep understanding of mathematical ideas. This research provides an innovative pathway for reforming mathematical analysis education, offering valuable insights for advancing the creative development of mathematics education.

References

[1]  Tall, D. (2013) How Humans Learn to Think Mathematically: Exploring the Three Worlds of Mathematics. Cambridge University Press.
https://doi.org/10.1017/cbo9781139565202
[2]  中华人民共和国教育部. 教育信息化2.0行动计划[EB/OL].
http://www.moe.gov.cn/srcsite/A16/s3342/201804/t20180425_334188.html, 2018-04-13.
[3]  Sweller, J. (1988) Cognitive Load during Problem Solving: Effects on Learning. Cognitive Science, 12, 257-285.
https://doi.org/10.1207/s15516709cog1202_4
[4]  高雲霄, 黄文君. 高校高等数学教学创新设计探究[J]. 教育进展, 2022, 12(11): 4625-4631.
[5]  Duval, R. (2006) A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics, 61, 103-131.
https://doi.org/10.1007/s10649-006-0400-z
[6]  Arcavi, A. (2003) The Role of Visual Representations in the Learning of Mathematics. Educational Studies in Mathematics, 52, 215-241.
https://doi.org/10.1023/a:1024312321077
[7]  Roschelle, J., et al. (2017) Future of Mathematics Learning in the Age of Computational Thinking. Journal of Computer Assisted Learning, 33, 586-596.
[8]  林穗华. 数学分析课程中的抽象与直观探讨[J]. 数学学习与研究, 2018(18): 4.
[9]  彭翕成. 高师院校开设动态几何课程的实践与发展研究——以华中师范大学为例[D]: [硕士学位论文]. 武汉: 华中师范大学, 2012.
[10]  李清微, 汤灿琴, 王利东. 基于GeoGebra软件的数学分析可视化教学探索[J]. 科教文汇, 2023(11): 66-70.
[11]  杨永明, 李霄. 直观可视化教学方法在现代高等教育课堂教学中的应用[J]. 高教学刊, 2022, 8(3): 94-98.
[12]  李清华, 王宝娟. 线性代数知识点的可视化教学设计探索与实践[J]. 大学数学, 2022, 38(2): 112-119.
[13]  徐定华, 刘单, 刘可伋. 分析数学课程的可视化教学设计探讨[J]. 大学数学, 2022, 38(4): 44-51.
[14]  秦智, 曲峰林. 基于GeoGebra的微积分可视化教学[J]. 高等数学研究, 2022, 25(6): 83-86.
[15]  宣晶雪, 张权. “双创”背景下“高等数学”课程中旋转体体积可视化教学设计[J]. 科技风, 2023(3): 103-105.
[16]  梁志鹏, 杨进霞. 基于Mathematica软件的三重积分可视化教学应用探索[J]. 软件, 2023, 44(5): 41-43.
[17]  张颖, 张会生. 线性代数可视化教学的若干实践[J]. 电脑知识与技术, 2023, 19(18): 106-109.
[18]  刘通, 胡蓉蓉. 利用Matlab软件对一维薛定谔方程的动力学可视化教学[J]. 物理通报, 2023(11): 35-38.
[19]  刘与嘉, 周小辉. 线性代数教学中若干“可视化”教学案例[J]. 高等数学研究, 2024, 27(1): 85-90.
[20]  褚鹏飞, 路云. 浅谈GeoGebra软件在线性代数可视化教学中的应用[J]. 大学数学, 2024, 40(1): 56-64.
[21]  李晓霞. 基于创新能力培养的高等数学可视化教学研究——评《知识可视化视觉表征的理论建构与教学应用》 [J]. 应用化工, 2024, 53(7): 1755.
[22]  杨晓丹, 赵越, 王琳静. 基于GeoGebra软件的高等数学可视化教学探究——以平行截面面积为已知的立体的体积为例[J]. 中国信息界, 2024(4): 185-187.
[23]  杨晓丹, 赵越, 王煜晶. 基于GeoGebra软件的矩阵乘法的可视化教学研究[J]. 科技风, 2024(11): 118-120.
[24]  Paivio, A. (1986) Mental Representations: A Dual Coding Approach. Oxford University Press.
[25]  刘锦圳, 张贤金, 孔祥斌. 基于双重编码理论的化学教材插图教学[J]. 教学与管理, 2023(28): 51-53.
[26]  张丽, 王强. 动态可视化对物理概念理解的影响研究[J]. 物理教学, 2021, 43(5): 34-38.
[27]  Barsalou, L.W. (2008) Grounded Cognition. Annual Review of Psychology, 59, 617-645.
https://doi.org/10.1146/annurev.psych.59.103006.093639
[28]  Höffler, T.N. and Leutner, D. (2007) Instructional Animation versus Static Pictures: A Meta-Analysis. Learning and Instruction, 17, 722-738.
[29]  林丽榕, 邓顺柳, 陈小兰, 等. 计算化学数据与图形在普通化学教学中的运用[J]. 大学化学, 2019, 34(9): 32-36.
[30]  Flavell, J.H. (1979) Metacognition and Cognitive Monitoring: A New Area of Cognitive-Developmental Inquiry. American Psychologist, 34, 906-911.
https://doi.org/10.1037/0003-066x.34.10.906
[31]  Gentner, D. (1983) Structure-Mapping: A Theoretical Framework for Analogy. Cognitive Science, 7, 155-170.
https://doi.org/10.1016/s0364-0213(83)80009-3

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133