|
人工智能在传统发酵食品生产中的应用
|
Abstract:
人工智能技术正逐步应用于传统发酵食品如酱油、醋、酒类等生产领域,推动传统产业向高效化、智能化转型。在生产工艺优化中,人工智能通过机器学习模型如神经网络、随机森林优化菌种筛选与鉴定、微生物数量动态调控及风味品质监测,显著提升菌株筛选准确率和风味分析效率,克服传统色谱法操作繁琐等局限。在发酵工艺自动化方面,智能配料、灭菌及一键式控制系统降低了人力成本,提高了生产稳定性和标准化水平。此外,人工智能技术还通过能源管理优化和余热回收实现节能减排,促进绿色生产。人工智能的深度融合为传统发酵食品产业提供了精准控制、高效生产和可持续发展的新路径。
Artificial intelligence technology is gradually being applied to the production of traditional fermented foods such as soy sauce, vinegar, and alcohol, promoting the transformation of traditional industries towards high efficiency and intelligence. In the optimization of production processes, artificial intelligence significantly improves the accuracy of strain screening and flavor analysis efficiency through machine learning models such as neural networks, random forest optimization for strain screening and identification, dynamic regulation of microbial quantity, and monitoring of flavor quality, overcoming the limitations of traditional chromatographic methods such as cumbersome operation. In terms of fermentation process automation, intelligent batching, sterilization, and one click control systems have reduced labor costs, improved production stability, and standardization levels. In addition, artificial intelligence technology also achieves energy conservation and emission reduction through energy management optimization and waste heat recovery, promoting green production. The deep integration of artificial intelligence provides a new path for precise control, efficient production, and sustainable development in the traditional fermented food industry.
[1] | 夏建业, 龙东娇, 陈敏, 等. 智能生物制造之发酵过程优化: 在线检测、人工智能与数字孪生技术[J]. 生物工程学报, 2025, 41(3): 1179-1196. |
[2] | 夏建业, 刘晶, 庄英萍. 人工智能时代发酵优化与放大技术的机遇与挑战[J]. 生物工程学报, 2022, 38(11): 4180-4199. |
[3] | 王宁晓璇, 李欣, 黄玉立, 等. 机器学习在传统发酵食品微生物结构及品质控制中的应用研究进展[J]. 食品工业科技, 2024, 45(13): 360-367. |
[4] | 肖龙. 信息化技术在发酵自动化系统中的应用[J]. 电子技术, 2024, 53(2): 164-167. |
[5] | Bayer, B., von Stosch, M., Melcher, M., Duerkop, M. and Striedner, G. (2019) Soft Sensor Based on 2D‐Fluorescence and Process Data Enabling Real‐Time Estimation of Biomass in Escherichia coli Cultivations. Engineering in Life Sciences, 20, 26-35. https://doi.org/10.1002/elsc.201900076 |
[6] | Xu, Z., Zhu, X., Mohsin, A., Guo, J., Zhuang, Y., Chu, J., et al. (2024) A Machine Learning‐Based Approach for Improving Plasmid DNA Production in Escherichia coli Fed‐Batch Fermentations. Biotechnology Journal, 19, e2400140. https://doi.org/10.1002/biot.202400140 |
[7] | 孙仪航, 钟典余. 数据驱动的人工智能方法在白酒行业中的应用研究进展[J]. 酿酒, 2024, 51(5): 43-45. |
[8] | 韩云翠. 浓香型基酒香气模型构建与自动化摘酒研究[D]: [硕士学位论文]. 济南: 齐鲁工业大学, 2023. |
[9] | 张超. 连续灭菌系统的设计讨论[J]. 化工与医药工程, 2019, 40(4): 22-25. |
[10] | 辛新. 基于分子光谱技术的浓香型白酒基酒品质检测研究[D]: [硕士学位论文]. 镇江: 江苏大学, 2017. |
[11] | 陈飞. 基于微量组分的白酒基酒分类鉴别与模式识别研究[D]: [硕士学位论文]. 重庆: 重庆大学, 2018. |
[12] | 代良超, 乌日娜, 陶冬冰, 等. 智能仿生在食品发酵中的应用及研究进展[J]. 食品工业科技, 2022, 43(19): 14-21. |
[13] | 管彬彬, 赵杰文, 金鸿娟, 等. 基于嗅觉可视技术的醋醅理化指标分析[J]. 农业机械学报, 2015, 46(9): 223-227, 244. |
[14] | 武斌, 王大智, 嵇港, 等. 基于正交线性判别分析和电子鼻技术的食醋分类[J]. 食品与发酵工业, 2020, 46(6): 263-268. |
[15] | Li, L., Wang, Z., Chen, X., Chu, J., Zhuang, Y. and Zhang, S. (2014) Optimization of Polyhydroxyalkanoates Fermentations with On-Line Capacitance Measurement. Bioresource Technology, 156, 216-221. https://doi.org/10.1016/j.biortech.2014.01.042 |
[16] | Beiroti, A., Hosseini, S.N., Aghasadeghi, M.R. and Norouzian, D. (2019) Comparative Study of μ‐Stat Methanol Feeding Control in Fed‐Batch Fermentation of Pichia pastoris Producing HBsAg: An Open‐Loop Control versus Recurrent Artificial Neural Network‐Based Feedback Control. Journal of Chemical Technology & Biotechnology, 94, 3924-3931. https://doi.org/10.1002/jctb.6192 |
[17] | 张超. 连续灭菌系统的设计讨论[J]. 化工与医药工程, 2019, 40(4): 22-25. |
[18] | 陈宝华. 浅谈发酵工程培养基的灭菌[J]. 山东化工, 2013, 42(3): 53-54, 56. |
[19] | 刘成龙. 基于氧化还原电位的葡萄酒发酵过程智能倒罐系统设计[D]: [硕士学位论文]. 咸宁: 西北农林科技大学, 2023. |
[20] | 陈晓春. 啤酒发酵系统温度智能控制[J]. 食品工业, 2019, 40(11): 219-222. |