全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

连续时间马尔科夫链及其在排队论中的应用
Continuous Time Markov Chain and Its Applications in Queuing Theory

DOI: 10.12677/pm.2025.155163, PP. 146-152

Keywords: 连续时间马尔科夫链,生灭过程,排队论,最优库存管理
Continuous Time Markov Chain
, Birth-Death Process, Queuing Theory, Optimal Inventory Management

Full-Text   Cite this paper   Add to My Lib

Abstract:

马尔科夫链的无记忆性简化了复杂系统的分析,使之成为研究排队论的核心方法之一。本文首先介绍了连续时间马尔科夫链的基本知识。然后重点探讨了连续时间马尔科夫链在排队论中的实际应用,借助于生灭过程的平稳分布等概率方法,详细分析了在数学期望的意义下的最优库存管理问题,展现了该模型的重要实用价值,为数学在管理科学、机械工程中的融通发展提供了重要的理论支持,也对培养学生理论联系实际的能力具有重要的提升作用。
The Markov chains has become one of the core models in studying queuing theory, due to the fact that its memoryless property helps to simplify the analysis of complex systems. In this article, some basic knowledge of continuous time Markov chains is recalled at first. Then, the practical application of continuous time Markov chains in queuing theory was discussed. By applying probability methods such as the stationary distribution of birth and death processes, the optimal inventory management problem is solved thoroughly in the sense of mathematical expectations. The obtained results show the significant practical value of the continuous time Markov chains model and provide important theoretical support for the integrated development between mathematics, management science and mechanical engineering. Moreover, it also plays an important role in enhancing students’ ability to integrate theory with practice.

References

[1]  孟玉珂. 排队论基础及应用[M]. 上海: 同济大学出版社, 1989.
[2]  van Ravenzwaaij, D., Cassey, P. and Brown, S.D. (2016) A Simple Introduction to Markov Chain Monte-Carlo Sampling. Psychonomic Bulletin & Review, 25, 143-154.
https://doi.org/10.3758/s13423-016-1015-8
[3]  Paulin, D. (2015) Concentration Inequalities for Markov Chains by Marton Couplings and Spectral Methods. Electronic Journal of Probability, 20, 1-32.
https://doi.org/10.1214/ejp.v20-4039
[4]  Xiang, X., Zhou, J., Deng, Y. and Yang, X. (2024) Identifying the Generator Matrix of a Stationary Markov Chain Using Partially Observable Data. Chaos: An Interdisciplinary Journal of Nonlinear Science, 34, Article 023132.
https://doi.org/10.1063/5.0156458
[5]  Vats, D., Flegal, J.M. and Jones, G.L. (2019) Multivariate Output Analysis for Markov Chain Monte Carlo. Biometrika, 106, 321-337.
https://doi.org/10.1093/biomet/asz002
[6]  宋永港, 刘宏宽. 海平面上升对黄浦江1000年一遇高潮位影响研究——基于马尔科夫链蒙特卡罗法[J]. 水力发电, 2023, 49(2): 17-21+49.
[7]  刘博宇, 韩美兰. 生鲜等易逝品的国内外库存管理与动态定价研究及综述[J]. 经济研究导刊, 2024(18): 71-75.
[8]  牟煜. 考虑冷藏保鲜的产地农产品三阶段动态库存策略研究[D]: [硕士学位论文]. 成都: 西南交通大学, 2022.
[9]  盛伟清. 供应链视角下RG公司成品安全库存管理优化研究[D]: [硕士学位论文]. 南昌: 江西财经大学, 2024.
[10]  田志勇, 霍灵瑜, 郝燕茹. 公共自行车系统车辆库存管理研究[J]. 系统科学与数学, 2024, 44(2): 408-424.
[11]  蒋莱. 基于需求波动的汽车零部件库存管理研究[D]: [硕士学位论文]. 上海: 上海交通大学, 2021.
[12]  钱敏平, 龚光鲁, 陈大岳, 等. 应用随机过程[M]. 北京: 高等教育出版社, 2011.
[13]  吴霞, 陈福来, 谢海明, 等. 眼科病床的合理安排——2009年全国大学生数学建模竞赛B题[J]. 湘南学院学报, 2010, 31(2): 25-30.
[14]  邰志艳, 王竣剑, 仵晓阳, 等. 基于马尔科夫链的眼科病床合理安排建模[J]. 中国新通信, 2018, 20(3): 28-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133