全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

中国省级全要素能源效率测算——基于共同前沿DDF模型与GML指数
Measurement of Total Factor Energy Efficiency at the Provincial Level in China—Based on the Common Frontier DDF Model and GML Index

DOI: 10.12677/ass.2025.145410, PP. 420-436

Keywords: 能源效率,共同前沿,群组前沿,TGR,GML指数
Energy Efficiency
, Common Frontier, Group Frontier, TGR, GML Index

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文采用中国2008~2022年除西藏、港澳台地区外30个省、市、自治区的面板数据,以资本、劳动、能耗为投入指标,考虑期望产出与非期望产出,将群组技术异质性纳入考察范围,根据共同前沿DDF模型,分析共同前沿和群组前沿下的全要素能源效率。并结合GML指数对能源效率进行分解与进一步分析,研究表明:1) 2008~2022年间中国能源总消耗量呈稳步递增的态势;2) 中国整体全要素能源效率处于较低水平,呈现小幅下降随后稳步上升的趋势;3) 全要素能源效率存在区域异质性,呈现“东–西–中”递减的分布特征,区域异质性对能源效率有显著影响。基于此,我们认为应推动技术创新与转移,强化区域协调发展,促进产业结构转型;根据能源无效项制定差异化的措施来提升整体效率;激励能源节约,持续推进能源结构优化。
This paper utilizes panel data from 30 provinces, municipalities, and autonomous regions in China (excluding Xizang, Hong Kong SAR, Macao, and Taiwan Region) from 2008 to 2022. With capital, labor, and energy consumption as input indicators, and considering both desirable and undesirable outputs, the study incorporates group technology heterogeneity into the analysis. Using the common frontier DDF model, it examines total factor energy efficiency under both the common frontier and group frontiers. Additionally, the GML index is employed to decompose and further analyze energy efficiency. The research findings indicate: 1) China’s total energy consumption showed a steady increasing trend from 2008 to 2022; 2) The overall total factor energy efficiency in China remains at a relatively low level, displaying a slight decline followed by a steady rise; 3) There is regional heterogeneity in total factor energy efficiency, exhibiting a decreasing distribution pattern of “East-West-Central”, with regional heterogeneity significantly impacting energy efficiency. Based on these findings, the study suggests promoting technological innovation and transfer, strengthening regional coordinated development, and facilitating industrial structure transformation. It also recommends formulating differentiated measures based on energy inefficiency to enhance overall efficiency, as well as incentivizing energy conservation and continuously advancing energy structure optimization.

References

[1]  林伯强. 碳中和背景下的广义节能——基于产业结构调整、低碳消费和循环经济的节能新内涵[J]. 厦门大学学报(哲学社会科学版), 2022, 72(2): 10-20.
[2]  余泳泽, 杨晓章, 张少辉. 中国经济由高速增长向高质量发展的时空转换特征研究[J]. 数量经济技术经济研究, 2019, 36(6): 3-21.
[3]  史丹. 中国能源效率的地区差异与节能潜力分析[J]. 中国工业经济, 2006(10): 49-58.
[4]  Hu, J. and Wang, S. (2006) Total-factor Energy Efficiency of Regions in China. Energy Policy, 34, 3206-3217.
https://doi.org/10.1016/j.enpol.2005.06.015

[5]  Filippini, M. and Hunt, L.C. (2015) Measurement of Energy Efficiency Based on Economic Foundations. Energy Economics, 52, S5-S16.
https://doi.org/10.1016/j.eneco.2015.08.023

[6]  Pang, R., Deng, Z. and Hu, J. (2015) Clean Energy Use and Total-Factor Efficiencies: An International Comparison. Renewable and Sustainable Energy Reviews, 52, 1158-1171.
https://doi.org/10.1016/j.rser.2015.08.002

[7]  刘建翠, 朱承亮. 中国地区全要素能源效率评价及节能潜力分析[J]. 工业技术经济, 2023, 42(8): 31-40.
[8]  张文彬, 郝佳馨. 生态足迹视角下中国全要素能源效率的空间差异性和收敛性研究[J]. 中国地质大学学报: 社会科学版, 2020, 20(5): 76-90.
[9]  Shang, Y., Liu, H. and Lv, Y. (2020) Total Factor Energy Efficiency in Regions of China: An Empirical Analysis on SBM-DEA Model with Undesired Generation. Journal of King Saud UniversityScience, 32, 1925-1931.
https://doi.org/10.1016/j.jksus.2020.01.033

[10]  Du, H., Matisoff, D.C., Wang, Y. and Liu, X. (2016) Understanding Drivers of Energy Efficiency Changes in China. Applied Energy, 184, 1196-1206.
https://doi.org/10.1016/j.apenergy.2016.05.002

[11]  吴江, 谭涛, 杨河, 等. 中国全要素能源效率评价研究——基于不可分的三阶段DEA模型[J]. 数理统计与管理, 2019, 38(3): 418-432.
[12]  陶长琪, 李翠, 王夏欢. 环境规制对全要素能源效率的作用效应与能源消费结构演变的适配关系研究[J]. 中国人口·资源与环境, 2018, 28(4): 98-108.
[13]  刘建翠, 郑世林. 中国工业绿色发展的技术效率及其影响因素研究——基于投入产出表的分析[J]. 城市与环境研究, 2019(3): 37-54.
[14]  陈菁泉, 连欣燕, 马晓君, 等. 中国全要素能源效率测算及其驱动因素[J]. 中国环境科学, 2022, 42(5): 2453-2463.
[15]  Guo, Q., Dong, Y., Feng, B. and Zhang, H. (2023) Can Green Finance Development Promote Total-Factor Energy Efficiency? Empirical Evidence from China Based on a Spatial Durbin Model. Energy Policy, 177, Article 113523.
https://doi.org/10.1016/j.enpol.2023.113523

[16]  张志辉. 中国区域能源效率演变及其影响因素[J]. 数量经济技术经济研究, 2015(8): 73-88.
[17]  袁晓玲, 张宝山, 杨万平. 基于环境污染的中国全要素能源效率研究[J]. 中国工业经济, 2009(2): 76-86.
[18]  龙如银, 刘爽, 王佳琪. 环境约束下中国际能源效率评价——基于博弈交叉效率和Malmquist指数模型[J]. 中国矿业大学学报(社会科学版), 2021, 23(1): 75-90.
[19]  Ferrier, G.D. and Lovell, C.A.K. (1990) Measuring Cost Efficiency in Banking. Journal of Econometrics, 46, 229-245.
https://doi.org/10.1016/0304-4076(90)90057-z

[20]  史丹, 吴利学, 傅晓霞, 等. 中国能源效率地区差异及其成因研究——基于随机前沿生产函数的方差分解[J]. 管理世界, 2008(2): 35-43.
[21]  李坤明, 方丽婷. 中国区域能源效率及其影响因素——基于面板随机前沿模型的分析[J]. 资源开发与市场, 2017, 33(11): 1324-1327+1370.
[22]  刘争, 黄浩. 中国省际能源效率及其影响因素研究——基于Shephard能源距离函数的SFA模型[J]. 南京财经大学学报, 2019(1): 99-108.
[23]  Chung, Y.H., Färe, R. and Grosskopf, S. (1997) Productivity and Undesirable Outputs: A Directional Distance Function Approach. Journal of Environmental Management, 51, 229-240.
https://doi.org/10.1006/jema.1997.0146

[24]  陈海跃. 中国区域能源效率及其影响因素分析——基于DEA-Malmquist模型[J]. 贵州财经大学学报, 2017(6): 32-39.
[25]  解文华, 方虹, 张军峰, 等. 基于 SBM-DEA 模型及Malmquist 指数的中国与欧盟航空运输企业能源效率比较研究[J]. 数学的实践与认识, 2017(17): 194-201.
[26]  Guo, X., Zhu, L., Fan, Y. and Xie, B. (2011) Evaluation of Potential Reductions in Carbon Emissions in Chinese Provinces Based on Environmental Dea. Energy Policy, 39, 2352-2360.
https://doi.org/10.1016/j.enpol.2011.01.055

[27]  Meng, F., Su, B., Thomson, E., Zhou, D. and Zhou, P. (2016) Measuring China’s Regional Energy and Carbon Emission Efficiency with DEA Models: A Survey. Applied Energy, 183, 1-21.
https://doi.org/10.1016/j.apenergy.2016.08.158

[28]  O’Donnell, C.J., Rao, D.S.P. and Battese, G.E. (2007) Meta-Frontier Frameworks for the Study of Firm-Level Efficiencies and Technology Ratios. Empirical Economics, 34, 231-255.
https://doi.org/10.1007/s00181-007-0119-4

[29]  Oh, D. (2010) A Meta-Frontier Approach for Measuring an Environmentally Sensitive Productivity Growth Index. Energy Economics, 32, 146-157.
https://doi.org/10.1016/j.eneco.2009.07.006

[30]  Oh, D. and Lee, J. (2009) A Meta-Frontier Approach for Measuring Malmquist Productivity Index. Empirical Economics, 38, 47-64.
https://doi.org/10.1007/s00181-009-0255-0

[31]  闫庆友, 桂增侃, 张文华, 等. 中国能源影子价格和能源环境效率省际差异[J]. 资源科学, 2020, 42(6): 1040-1051.
[32]  Färe, R., Grosskopf, S., Norris, M., et al. (1994) Productivity Growth, Technical Progress, and Efficiency Change in Industrialized Countries. The American Economic Review, 87, 66-83.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133