全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

峨眉山大火成岩省高低Ti玄武岩成因研究
Research on the Genesis of High-Low Ti Basalt in ELIP

DOI: 10.12677/ag.2025.155063, PP. 646-655

Keywords: 峨眉山大火成岩省,高低钛玄武岩,岩石成因
ELIP
, High-Low Ti Basalt, Rock Genesis

Full-Text   Cite this paper   Add to My Lib

Abstract:

峨眉山大火成岩省(ELIP)位于扬子板块西缘,其主要组成部分为大陆溢流玄武岩。峨眉山玄武岩根据Ti含量被分为低钛玄武岩和高钛玄武岩,前人已经对峨眉山高低钛玄武岩地球化学和同位素特征进行了系统的研究,然而对高低钛玄武岩的成因机制还存在争议。文章对峨眉山高低钛玄武岩的地球化学、Sr-Nd同位素组成数据进行整理分析,以约束峨眉山高低钛玄武岩成因。研究结果表明:峨眉山低钛玄武岩和高钛玄武岩都来自于地幔柱熔融。峨眉山高钛玄武岩没有受到明显的地壳和岩石圈地幔物质污染,而峨眉山内带低钛玄武岩遭受到明显的地壳物质和岩石圈地幔物质污染。低钛玄武岩为尖晶石橄榄岩地幔熔融,高钛玄武岩为石榴石橄榄岩地幔熔融。峨眉山高低钛玄武岩成因的研究为深入理解峨眉山大火成岩省的形成机制及地幔柱–岩石圈相互作用过程提供了重要约束。
The Emeishan Large Igneous Province (ELIP) is located on the western margin of the Yangtze Block, with its main component being continental flood basalts. The Emeishan basalts are classified into Low-Ti and High-Ti types based on Ti content. Previous studies have systematically investigated the geochemical and isotopic characteristics of these High-Ti and Low-Ti basalts, yet controversies remain regarding their genetic mechanisms. This paper compiles and analyzes geochemical data and Sr-Nd isotopic compositions of the Emeishan High-Ti and Low-Ti basalts to constrain their petrogenesis. The results indicate that both the Low-Ti basalts and High-Ti basalts of the Emeishan originated from mantle plume melting. The High-Ti basalts show no significant contamination by crustal or lithospheric mantle materials, whereas the inner-zone Low-Ti basalts exhibit evident contamination by both crustal and lithospheric mantle components. The Low-Ti basalts were derived from melting of spinel-bearing peridotite mantle, while the High-Ti basalts originated from garnet-bearing peridotite mantle. This study on the genesis of Emeishan basalts provides important constraints for understanding the formation mechanism of the ELIP and the interaction processes between mantle plumes and the lithosphere.

References

[1]  Xiao, L., Xu, Y.G., Mei, H.J., Zheng, Y.F., He, B. and Pirajno, F. (2004) Distinct Mantle Sources of Low-Ti and High-Ti Basalts from the Western Emeishan Large Igneous Province, SW China: Implications for Plume-Lithosphere Interaction. Earth and Planetary Science Letters, 228, 525-546.
https://doi.org/10.1016/j.epsl.2004.10.002
[2]  张招崇, 王福生. 峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨[J]. 地球科学, 2003, 28(4): 431-439.
[3]  Xu, Y., Chung, S., Jahn, B. and Wu, G. (2001) Petrologic and Geochemical Constraints on the Petrogenesis of Permian-Triassic Emeishan Flood Basalts in Southwestern China. Lithos, 58, 145-168.
https://doi.org/10.1016/s0024-4937(01)00055-x
[4]  Shellnutt, J.G. and Jahn, B.-M. (2011) Origin of Late Permian Emeishan Basaltic Rocks from the Panxi Region (SW China): Implications for the Ti-Classification and Spatial-Compositional Distribution of the Emeishan Flood Basalts. Journal of Volcanology and Geothermal Research, 199, 85-95.
https://doi.org/10.1016/j.jvolgeores.2010.10.009
[5]  Kamenetsky, V.S., Chung, S., Kamenetsky, M.B. and Kuzmin, D.V. (2012) Picrites from the Emeishan Large Igneous Province, SW China: A Compositional Continuum in Primitive Magmas and Their Respective Mantle Sources. Journal of Petrology, 53, 2095-2113.
https://doi.org/10.1093/petrology/egs045
[6]  Meng, F., Tian, Y., Kerr, A.C., Wang, W., Wu, Z., Xu, Q., et al. (2023) Geochemistry and Petrogenesis of Late Permian Basalts from the Sichuan Basin, SW China: Implications for the Geodynamics of the Emeishan Mantle Plume. Journal of Asian Earth Sciences, 241, Article 105477.
https://doi.org/10.1016/j.jseaes.2022.105477
[7]  Ren, Z., Wu, Y., Zhang, L., Nichols, A.R.L., Hong, L., Zhang, Y., et al. (2017) Primary Magmas and Mantle Sources of Emeishan Basalts Constrained from Major Element, Trace Element and Pb Isotope Compositions of Olivine-Hosted Melt Inclusions. Geochimica et Cosmochimica Acta, 208, 63-85.
https://doi.org/10.1016/j.gca.2017.01.054
[8]  田雨露, 李亚, 孟凡超, 赵立可, 吴智平, 杜青. 峨眉山大火成岩省岩石成因与空间差异性研究——基于全区高Ti玄武岩地球化学数据分析与模拟[J]. 岩石矿物学杂志, 2021, 40(4): 687-703.
[9]  姜常义, 钱壮志, 姜寒冰, 唐冬梅, 张蓬勃, 朱士飞. 云南宾川-永胜-丽江地区低钛玄武岩和苦橄岩的岩石成因与源区性质[J]. 岩石学报, 2007, 23(4): 777-792.
[10]  He, B., Xu, Y., Chung, S., Xiao, L. and Wang, Y. (2003) Sedimentary Evidence for a Rapid, Kilometer-Scale Crustal Doming Prior to the Eruption of the Emeishan Flood Basalts. Earth and Planetary Science Letters, 213, 391-405.
https://doi.org/10.1016/s0012-821x(03)00323-6
[11]  Xiao, L., Xu, Y., Chung, S., He, B. and Mei, H. (2003) Chemostratigraphic Correlation of Upper Permian Lavas from Yunnan Province, China: Extent of the Emeishan Large Igneous Province. International Geology Review, 45, 753-766.
https://doi.org/10.2747/0020-6814.45.8.753
[12]  Song, X., Qi, H., Robinson, P.T., Zhou, M., Cao, Z. and Chen, L. (2008) Melting of the Subcontinental Lithospheric Mantle by the Emeishan Mantle Plume; Evidence from the Basal Alkaline Basalts in Dongchuan, Yunnan, Southwestern China. Lithos, 100, 93-111.
https://doi.org/10.1016/j.lithos.2007.06.023
[13]  Xu, J., Suzuki, K., Xu, Y., Mei, H. and Li, J. (2007) Os, Pb, and Nd Isotope Geochemistry of the Permian Emeishan Continental Flood Basalts: Insights into the Source of a Large Igneous Province. Geochimica et Cosmochimica Acta, 71, 2104-2119.
https://doi.org/10.1016/j.gca.2007.01.027
[14]  Hou, T., Zhang, Z., Kusky, T., Du, Y., Liu, J. and Zhao, Z. (2011) A Reappraisal of the High-Ti and Low-Ti Classification of Basalts and Petrogenetic Linkage between Basalts and Mafic-Ultramafic Intrusions in the Emeishan Large Igneous Province, SW China. Ore Geology Reviews, 41, 133-143.
https://doi.org/10.1016/j.oregeorev.2011.07.005
[15]  Zhang, L., Ren, Z., Handler, M.R., Wu, Y., Zhang, L., Qian, S., et al. (2019) The Origins of High-Ti and Low-Ti Magmas in Large Igneous Provinces, Insights from Melt Inclusion Trace Elements and Sr-Pb Isotopes in the Emeishan Large Igneous Province. Lithos, 344, 122-133.
https://doi.org/10.1016/j.lithos.2019.06.014
[16]  赵兵, 刘希军, 李政林, 等. 峨眉山大火成岩省外带岩浆作用:桂西地区辉绿岩年代学、Sr-Nd-Hf同位素及铂族元素研究[C]//广西隐伏金属矿产勘查重点实验室;桂林理工大学有色金属矿产勘查与资源高效利用协同创新中心. 2021年中国地球科学联合学术年会论文集. 2021: 54-55.
[17]  Chung, S., Lee, T., Lo, C., Wang, P., Chen, C., Yem, N.T., et al. (1997) Intraplate Extension Prior to Continental Extrusion along the Ailao Shan-Red River Shear Zone. Geology, 25, 311-314.
https://doi.org/10.1130/0091-7613(1997)025<0311:ieptce>2.3.co;2
[18]  Shellnutt, J.G., Denyszyn, S.W. and Mundil, R. (2012) Precise Age Determination of Mafic and Felsic Intrusive Rocks from the Permian Emeishan Large Igneous Province (SW China). Gondwana Research, 22, 118-126.
https://doi.org/10.1016/j.gr.2011.10.009
[19]  He, B., Xu, Y., Huang, X., Luo, Z., Shi, Y., Yang, Q., et al. (2007) Age and Duration of the Emeishan Flood Volcanism, SW China: Geochemistry and SHRIMP Zircon U-Pb Dating of Silicic Ignimbrites, Post-Volcanic Xuanwei Formation and Clay Tuff at the Chaotian Section. Earth and Planetary Science Letters, 255, 306-323.
https://doi.org/10.1016/j.epsl.2006.12.021
[20]  Zhang, H., Gao, L., Zhang, C., et al. (2018) The Discovery of the 2.35 Ga Crystalline Basement in the Southwest of the Yangtze Block and Its Geological Significance. Acta Geologica Sinica English Edition, 92, 2460-2461.
[21]  翟明国, 杨瑞英. 攀西地区早前寒武纪片麻岩基底[J]. 岩石学报, 1986, 2(3): 22-38.
[22]  He, Q., Xiao, L., Balta, B., Gao, R. and Chen, J. (2010) Variety and Complexity of the Late-Permian Emeishan Basalts: Reappraisal of Plume-Lithosphere Interaction Processes. Lithos, 119, 91-107.
https://doi.org/10.1016/j.lithos.2010.07.020
[23]  Chung, S. and Jahn, B. (1995) Plume-Lithosphere Interaction in Generation of the Emeishan Flood Basalts at the Permian-Triassic Boundary. Geology, 23, 889-892.
https://doi.org/10.1130/0091-7613(1995)023<0889:pliigo>2.3.co;2
[24]  张招崇, John J Mahoney, 王福生, 赵莉, 艾羽, 杨铁铮. 峨眉山大火成岩省西部苦橄岩及其共生玄武岩的地球化学:地幔柱头部熔融的证据[J]. 岩石学报, 2006, 22(6): 1538-1552.
[25]  Lassiter, J.C. and DePaolo, D.J. (2013) Plume/Lithosphere Interaction in the Generation of Continental and Oceanic Flood Basalts: Chemical and Isotopic Constraints. Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geo-Physical Monograph, 100, 335-355.
https://doi.org/10.1029/gm100p0335
[26]  Sun, S.-S. and McDonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society, London, Special Publications, 42, 313-345.
https://doi.org/10.1144/gsl.sp.1989.042.01.19
[27]  Hofmann, A.W., Jochum, K.P., Seufert, M. and White, W.M. (1986) Nb and Pb in Oceanic Basalts: New Constraints on Mantle Evolution. Earth and Planetary Science Letters, 79, 33-45.
https://doi.org/10.1016/0012-821x(86)90038-5
[28]  Rudnick, R.L. and Gao, S. (2003) Composition of the Continental Crust. In: Holland, H.D. and Turekian, K.K., Eds., Treatise on Geochemistry, Elsevier, 1-64.
https://doi.org/10.1016/b0-08-043751-6/03016-4
[29]  NEAL, C.R. (2002) Mantle Sources and the Highly Variable Role of Continental Lithosphere in Basalt Petrogenesis of the Kerguelen Plateau and Broken Ridge LIP: Results from ODP Leg 183. Journal of Petrology, 43, 1177-1205.
https://doi.org/10.1093/petrology/43.7.1177
[30]  Wooden, J.L., Czamanske, G.K., Fedorenko, V.A., Arndt, N.T., Chauvel, C., Bouse, R.M., et al. (1993) Isotopic and Trace-Element Constraints on Mantle and Crustal Contributions to Siberian Continental Flood Basalts, Noril’sk Area, Siberia. Geochimica et Cosmochimica Acta, 57, 3677-3704.
https://doi.org/10.1016/0016-7037(93)90149-q
[31]  张招崇, 王福生, 郝艳丽, 等. 峨眉山大火成岩省中苦橄岩与其共生岩石的地球化学特征及其对源区的约束[J]. 地质学报, 2004, 78(2): 171-180.
[32]  Green, D.H. (1975) Genesis of Archean Peridotitic Magmas and Constraints on Archean Geothermal Gradients and Tectonics. Geology, 3, 15-18.
https://doi.org/10.1130/0091-7613(1975)3<15:goapma>2.0.co;2
[33]  Irving, A.J. and Frey, F.A. (1978) Distribution of Trace Elements between Garnet Megacrysts and Host Volcanic Liquids of Kimberlitic to Rhyolitic Composition. Geochimica et Cosmochimica Acta, 42, 771-787.
https://doi.org/10.1016/0016-7037(78)90092-3
[34]  Aldanmaz, E., Pearce, J.A., Thirlwall, M.F. and Mitchell, J.G. (2000) Petrogenetic Evolution of Late Cenozoic, Post-Collision Volcanism in Western Anatolia, Turkey. Journal of Volcanology and Geothermal Research, 102, 67-95.
https://doi.org/10.1016/s0377-0273(00)00182-7
[35]  Yu, S., Chen, L., Lan, J., He, Y., Chen, Q. and Song, X. (2020) Controls of Mantle Source and Condition of Melt Extraction on Generation of the Picritic Lavas from the Emeishan Large Igneous Province, SW China. Journal of Asian Earth Sciences, 203, Article 104534.
https://doi.org/10.1016/j.jseaes.2020.104534

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133