|
马兰庄铁尾矿地球化学特征及其应用
|
Abstract:
铁尾矿砂作为铁矿石加工和冶炼过程中产生的废弃物,含有大量的硅酸盐矿物和其它有益成分,铁尾矿砂的资源化利用在环境保护和资源循环利用方面具有重要意义。本文以马兰庄铁尾矿砂作为研究对象,通过岩石学、地球化学等分析方法,结合模拟实验,对铁尾矿砂在土壤改良方面的应用进行了探讨。结果表明:铁尾矿砂碎屑成分主要由石英、黑云母、辉石、角闪石,其次为磁铁矿及少量斜长石。矿物中含量有丰富的钾、钠、镁、铁、钙等金属元素以及微量元素,对土壤改良具有提高肥力的作用。铁尾矿砂粒度分布适中,粒径大于0.25 mm的颗粒添加到土壤中能够起到很好的支撑作用,增强土壤的透气性和透水性。模拟实验中铁尾矿砂元素析出受pH值影响显著,对植物生长有益组分析出含量比较高。稀土元素表现为轻稀土亏损、重稀土富集。将铁尾矿与生物炭、腐殖质等混合使用,可以有效改善土壤结构,提升土壤的肥力,具有较好的应用价值和经济效益。
As a waste generated in the process of iron ore processing and smelting, iron tailings contains a large number of silicate minerals and other beneficial components, and the resource utilization of iron tailings is of great significance in environmental protection and resource recycling. In this paper, the application of iron tailings in soil improvement was discussed through petrology, geochemistry and other analytical methods, combined with simulation experiments. The results show that the detrital composition of iron tailings is mainly composed of quartz, biotite, pyroxene and hornblende, followed by magnetite and a small amount of plagioclase. The minerals are rich in potassium, sodium, magnesium, iron, calcium and other metal elements and trace elements, which have the effect of improving fertility in soil improvement. The particle size distribution of iron tailings sand is moderate, and the particles with a particle size greater than 0.25 mm can play a good supporting role when added to the soil, and enhance the air permeability and water permeability of the soil. In the simulation experiment, the precipitation of iron tailings sand was significantly affected by the pH value, and the content of the beneficial group for plant growth was relatively high. Rare earth elements are light rare earth losses and heavy rare earth enrichment. The mixing of iron tailings with biochar and humus can effectively improve the soil structure and enhance the fertility of the soil, which has good application value and economic benefits.
[1] | 任明昊, 谢贤, 李博琦, 等. 铁尾矿综合利用研究进展[J]. 矿产保护与利用, 2022, 42(3): 155-168. |
[2] | 赵淑芳, 王浩明, 高玉倩, 等. 开发含高硅铁尾矿硅肥实验研究初探[J]. 矿产综合利用, 2018(5): 126-130. |
[3] | 牛福生, 牛钰芳, 张晋霞, 等. 响应曲面法优化高硅铁尾矿制备硅肥实验[J]. 非金属矿, 2024, 47(1): 103-107. |
[4] | 张丛香, 刘润华, 刘双安, 等. 利用铁尾矿改良苏打盐碱地技术研究与应用[J]. 矿业工程, 2016, 14(1): 39-41. |
[5] | 成词峰, 刘文连, 安家金, 等. 钒钛磁铁尾矿原位改良及无土生态闭库种植实验[J]. 矿业研究与开发, 2023, 43(4): 160-165. |
[6] | 杨孝勇. 基于铁尾矿的新型盐碱地复合改良剂的研制及应用[D]: [硕士学位论文]. 济南: 山东大学, 2020. |
[7] | 山雨. 铁尾矿硅缓释盐碱土改良材料制备及应用研究[D]: [硕士学位论文]. 辽宁: 辽宁科技大学, 2023. |
[8] | 张丽, 赵志强, 王静. 铁尾矿砂与有机肥配施对土壤肥力的影响[J]. 农业环境科学学报, 2020, 39(5): 1023-1030. |
[9] | 周洋, 王磊, 李强. 铁尾矿砂改良土壤的水分保持能力研究[J]. 水土保持学报, 2021, 35(3): 267-274. |
[10] | Liu, Y., Yang, Z. and Wang, L. (2017) Feasibility of Using Iron Tailings to Enhance Soil Fertility and Crop Yield. Journal of Soils and Sediments, 17, 1456-1465. |
[11] | Zhao, M., Sun, X. and Zhang, R. (2019) Effects of Iron Tailings on Soil Physical Properties and Vegetation Restoration in Mining Areas. Ecological Engineering, 130, 1-8. |
[12] | Wu, J., Li, P. and Zhang, K. (2021) Sustainable Utilization of Iron Tailings in Soil Improvement: A Global Perspective. Resources, Conservation & Recycling, 168, Article 105266. |
[13] | Srivastava, A. (2021) COVID-19 and Air Pollution and Meteorology-An Intricate Relationship: A Review. Chemosphere, 263, Article 128297. https://doi.org/10.1016/j.chemosphere.2020.128297 |
[14] | 梁成华, 金耀青, 宋菲, 等. 黑云母的释钾能力及其生物有效性研究[J]. 土壤学报, 1994(2): 220-223. |
[15] | 潘大伟, 梁成华, 杜立宇. 土壤含钾矿物的释钾研究进展[J]. 土壤通报, 2005, 36(2): 253-258. |
[16] | 梁鑫, 韩亚峰, 郑柯, 等. 磁铁矿对稻田土壤碳矿化的影响[J]. 生态环境学报, 2023, 32(9): 1615-1622. |
[17] | 魏由庆, 严慧峻. 磁学农业应用与磁性肥料[J]. 土壤肥料, 2000(5): 9-12. |
[18] | 梁福利. 马兰庄铁矿选矿厂尾矿的回收利用[J]. 矿山机械, 2009, 37(16): 37-38. |
[19] | Cui, X., Geng, Y., Li, T., Zhao, R., Li, X. and Cui, Z. (2021) Field Application and Effect Evaluation of Different Iron Tailings Soil Utilization Technologies. Resources, Conservation and Recycling, 173, Article 105746. https://doi.org/10.1016/j.resconrec.2021.105746 |
[20] | Diao, H., Chen, X., Zhao, X., Dong, K. and Wang, C. (2022) Effects of Nitrogen Addition and Precipitation Alteration on Soil Respiration and Its Components in a Saline-Alkaline Grassland. Geoderma, 406, Article 115541. https://doi.org/10.1016/j.geoderma.2021.115541 |
[21] | 王芳娜, 朱飞飞, 李英华, 等. 硅酸盐矿物增强风化技术对水稻田植物-土壤系统固碳的影响[J]. 应用生态学报, 2024, 35(10): 2733-2743. |
[22] | 高素素, 陈继虹, 李王成, 等. 掺砂量对中度盐碱土壤水力特性及溶质运移过程的影响[J]. 水土保持学报, 2024, 38(5): 374-384. |
[23] | 刘腾, 蒋炜. 广东惠州金山新城规划区土壤地球化学背景值及分区研究[J]. 矿产勘查, 2024, 15(12): 2318-2328. |
[24] | 黄彪, 鲁菲菲, 李巍, 等. 福建连城县潜在富硒土壤典型种植区花生-土壤系统金属元素含量特征及健康风险评价[J/OL]. 农业环境科学学报, 1-23. http://kns.cnki.net/kcms/detail/12.1347.S.20250113.1430.002.html, 2025-01-21. |
[25] | 任恩良, 邱轩浩, 王丽, 等. 粉煤灰改良盐碱地研究现状与展望[J]. 金属矿山, 2024(12): 26-35. |
[26] | 蔺方春, 陈士超, 郭富强, 等. 不同施肥方式下盐碱土土壤理化性质特性分析[J]. 温带林业研究, 2024, 7(3): 34-39. |
[27] | 方建德, 林成芳. 土壤有机质形成转化过程及其影响因素综述[J]. 亚热带资源与环境学报, 2024, 19(1): 24-34. |