全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

铝基复合材料的制备与研究现状
The Preparation and Research Status of Aluminum Matrix Composites

DOI: 10.12677/nat.2025.152007, PP. 50-60

Keywords: 铝基复合材料,界面结合,增强体,制备方法,应用
Aluminum Matrix Composites
, Interface Bonding, Reinforcement Phase, Preparation Methods, Applications

Full-Text   Cite this paper   Add to My Lib

Abstract:

由于其重量轻,密度小,热膨胀系数小,耐腐蚀,高强度,高刚度,高强度和高热稳定性,耐磨损,抗疲劳等特点,使其在工业中得到了广泛的应用。本文根据国内外铝基复合材料的发展状况,综述了目前国内外常用的增强相类型及特性,介绍了国内外常用的新型增强相的制造工艺,并探讨了其主要应用领域。
Due to its characteristics such as light weight, low density, low coefficient of thermal expansion, corrosion resistance, high strength, high stiffness, high thermal stability, wear resistance, and fatigue resistance, aluminum matrix composites have been widely used in various industries. Based on the development status of aluminum matrix composites both domestically and internationally, this paper reviews the types and properties of commonly used reinforcement phases, introduces the manufacturing processes of new types of reinforcement phases, and discusses their main application fields.

References

[1]  费良军, 朱秀荣, 童文俊, 等. 纤维增强铝基复合材料及其应用[J]. 特种铸造及有色金属, 2001(S1):150-152.
[2]  Zhu, C., Su, Y., Wang, X., Sun, H., Ouyang, Q. and Zhang, D. (2021) Process Optimization, Microstructure Characterization and Thermal Properties of Mesophase Pitch-Based Carbon Fiber Reinforced Aluminum Matrix Composites Fabricated by Vacuum Hot Pressing. Composites Part B: Engineering, 215, Article 108746.
https://doi.org/10.1016/j.compositesb.2021.108746
[3]  Lalet, G., Kurita, H., Miyazaki, T., Kawasaki, A. and Silvain, J. (2014) Thermomechanical Stability of a Carbon Fiber-Reinforced Aluminum Matrix Composite Fabricated by Spark Plasma Sintering in Various Pulse Conditions. Materials Letters, 130, 32-35.
https://doi.org/10.1016/j.matlet.2014.05.070
[4]  Zhang, J., Liu, S., Lu, Y., Jiang, L., Zhang, Y. and Li, T. (2017) Semisolid-Rolling and Annealing Process of Woven Carbon Fibers Reinforced Al-Matrix Composites. Journal of Materials Science & Technology, 33, 623-629.
https://doi.org/10.1016/j.jmst.2017.01.002
[5]  Oh, S., Lim, J., Kim, Y., Yoon, J., Kim, G., Lee, J., et al. (2012) Fabrication of Carbon Nanofiber Reinforced Aluminum Alloy Nanocomposites by a Liquid Process. Journal of Alloys and Compounds, 542, 111-117.
https://doi.org/10.1016/j.jallcom.2012.07.029
[6]  陈辉辉. 活塞用碳纤维铝基复合材料的制备方案研究[J]. 昆明冶金高等专科学校学报, 2005, 21(3): 15-17.
[7]  Dong, Z.J., Li, X.K., Yuan, G.M., Cui, Z.W., Cong, Y. and Westwood, A. (2013) Tensile Strength, Oxidation Resistance and Wettability of Carbon Fibers Coated with a TiC Layer Using a Molten Salt Method. Materials & Design, 50, 156-164.
https://doi.org/10.1016/j.matdes.2013.02.084
[8]  Lee, C., Kim, I., Lee, W., Ko, S., Jang, J., Lee, T., et al. (2010) Formation and Analysis of SiC Coating Layer on Carbon Short Fiber. Surface and Interface Analysis, 42, 1231-1234.
https://doi.org/10.1002/sia.3495
[9]  Sha, J., Lü, Z., Sha, R., Zu, Y., Dai, J., Xian, Y., et al. (2021) Improved Wettability and Mechanical Properties of Metal Coated Carbon Fiber-Reinforced Aluminum Matrix Composites by Squeeze Melt Infiltration Technique. Transactions of Nonferrous Metals Society of China, 31, 317-330.
https://doi.org/10.1016/s1003-6326(21)65498-5
[10]  Yang, Q., Liu, J., Li, S., Wang, F. and Wu, T. (2014) Fabrication and Mechanical Properties of Cu-Coatedwoven Carbon Fibers Reinforced Aluminum Alloy Composite. Materials & Design, 57, 442-448.
https://doi.org/10.1016/j.matdes.2013.12.064
[11]  Bhav Singh, B. and Balasubramanian, M. (2009) Processing and Properties of Copper-Coated Carbon Fibre Reinforced Aluminium Alloy Composites. Journal of Materials Processing Technology, 209, 2104-2110.
https://doi.org/10.1016/j.jmatprotec.2008.05.002
[12]  刘连涛, 孙勇. 纤维增强铝基复合材料研究进展[J]. 南方金属, 2008(6): 1-4, 47.
[13]  Qu, X., Wang, F., Shi, C., Zhao, N., Liu, E., He, C., et al. (2018) In Situ Synthesis of a Gamma-Al2O3 Whisker Reinforced Aluminium Matrix Composite by Cold Pressing and Sintering. Materials Science and Engineering: A, 709, 223-231.
https://doi.org/10.1016/j.msea.2017.10.063
[14]  Li, J., Wang, F., Shi, C., Liu, E., He, C. and Zhao, N. (2021) High Strength-Ductility Synergy of MgAlB4 Whisker Reinforced Aluminum Matrix Composites Achieved by in Situ Synthesis. Materials Science and Engineering: A, 799, Article 140127.
https://doi.org/10.1016/j.msea.2020.140127
[15]  Zhou, Y., Yu, Z., Zhao, N., Shi, C., Liu, E., Du, X., et al. (2013) Microstructure and Properties of in Situ Generated MgAl2O4 Spinel Whisker Reinforced Aluminum Matrix Composites. Materials & Design (1980-2015), 46, 724-730.
https://doi.org/10.1016/j.matdes.2012.11.022
[16]  郝保红, 向兰, 方克明. 氧化铝晶须增强铝基复合材料的应用前景[J]. 新技术新工艺, 2006(6): 42-45.
[17]  Li, Z., Fei, W., Yue, H. and Wang, L. (2007) Hot Deformation Behaviors of Bi2O3-Coated Al18B4O33 Whisker Reinforced Aluminum Matrix Composite with High Formability. Composites Science and Technology, 67, 963-973.
https://doi.org/10.1016/j.compscitech.2006.06.009
[18]  Pandey, N., Chakrabarty, I., Barkane, K., Mehta, N.S. and Majhi, M.R. (2020) Microstructure, Mechanical and Wear Properties of Aluminum Borate Whisker Reinforced Aluminum Matrix Composites. Transactions of Nonferrous Metals Society of China, 30, 1731-1742.
https://doi.org/10.1016/s1003-6326(20)65334-1
[19]  Dhulipalla, A., Uday Kumar, B., Akhil, V., Zhang, J., Lu, Z., Park, H., et al. (2020) Synthesis and Machining Characteristics of Novel TiC Ceramic and MoS2 Soft Particulate Reinforced Aluminium Alloy 7075 Matrix Composites. Manufacturing Letters, 24, 82-86.
https://doi.org/10.1016/j.mfglet.2020.04.001
[20]  Rahman, M.H. and Rashed, H.M.M.A. (2014) Characterization of Silicon Carbide Reinforced Aluminum Matrix Composites. Procedia Engineering, 90, 103-109.
https://doi.org/10.1016/j.proeng.2014.11.821
[21]  Sert, A., Celik, O. and Wear, N. (2014) Behavior of SiC-Reinforced Surface Composite Al7075-T651 Aluminum Alloy Produced Using Friction Stir Processing. Indian Journal of Engineering and Materials Sciences, 21, 35-43.
[22]  Pugazhenthi, A., Kanagaraj, G., Dinaharan, I. and David Raja Selvam, J. (2018) Turning Characteristics of in Situ Formed TiB2 Ceramic Particulate Reinforced AA7075 Aluminum Matrix Composites Using Polycrystalline Diamond Cutting Tool. Measurement, 121, 39-46.
https://doi.org/10.1016/j.measurement.2018.02.039
[23]  Du, X., Gao, T., Li, D., Wu, Y. and Liu, X. (2014) A Novel Approach to Synthesize Sic Particles by in Situ Reaction in Al-Si-C Alloys. Journal of Alloys and Compounds, 588, 374-377.
https://doi.org/10.1016/j.jallcom.2013.11.099
[24]  Niteesh Kumar, S.J., Keshavamurthy, R., Haseebuddin, M.R. and Koppad, P.G. (2017) Mechanical Properties of Aluminium-Graphene Composite Synthesized by Powder Metallurgy and Hot Extrusion. Transactions of the Indian Institute of Metals, 70, 605-613.
https://doi.org/10.1007/s12666-017-1070-5
[25]  Tiwari, J.K., Mandal, A., Rudra, A., Mukherjee, D. and Sathish, N. (2019) Evaluation of Mechanical and Thermal Properties of Bilayer Graphene Reinforced Aluminum Matrix Composite Produced by Hot Accumulative Roll Bonding. Journal of Alloys and Compounds, 801, 49-59.
https://doi.org/10.1016/j.jallcom.2019.06.127
[26]  李岳, 杜晓明, 刘凤国. 石墨烯增强6061铝基复合材料的组织与力学性能研究[J]. 沈阳理工大学学报, 2023, 42(2): 49-55.
[27]  高博, 王成辉, 余申卫. 石墨烯增强铝基复合材料制备方法及效果研究进展[J]. 热加工工艺, 2023, 52(24): 5-14.
[28]  Yang, X., Yang, L., Zhu, D., Wang, H., Chen, T., Chu, C., et al. (2024) Effect of Graphene Sheet Diameter on the Microstructure and Properties of Copper-Plated Graphene-Reinforced 6061-Aluminum Matrix Composites. Journal of Materials Research and Technology, 28, 3286-3296.
https://doi.org/10.1016/j.jmrt.2023.12.259
[29]  曹子林, 张林慧, 仲斌年, 等. 铝基复合材料的制备和研究现状[J]. 金属功能材料, 2023, 30(2): 29-39.
[30]  Bodukuri, A.K., Eswaraiah, K., Rajendar, K. and Sampath, V. (2016) Fabrication of Al-SiC-B4C Metal Matrix Composite by Powder Metallurgy Technique and Evaluating Mechanical Properties. Perspectives in Science, 8, 428-431.
https://doi.org/10.1016/j.pisc.2016.04.096
[31]  Zhang, J., Liu, Q., Yang, S., Chen, Z., Liu, Q. and Jiang, Z. (2020) Microstructural Evolution of Hybrid Aluminum Matrix Composites Reinforced with Sic Nanoparticles and Graphene/Graphite Prepared by Powder Metallurgy. Progress in Natural Science: Materials International, 30, 192-199.
https://doi.org/10.1016/j.pnsc.2020.01.024
[32]  Jia, C., Zhang, P., Xu, W. and Wang, W. (2021) Neutron Shielding and Mechanical Properties of Short Carbon Fiber Reinforced Aluminium 6061-Boron Carbide Hybrid Composite. Ceramics International, 47, 10193-10196.
https://doi.org/10.1016/j.ceramint.2020.12.131
[33]  Yang, S., Gao, X., Li, W., Dai, Y., Zhang, J., Zhang, X., et al. (2024) Corrigendum to Effects of the Graphene Content on Mechanical Properties and Corrosion Resistance of Aluminum Matrix Composite. Journal of Materials Research and Technology, 30, Article 1056.
https://doi.org/10.1016/j.jmrt.2024.03.081
[34]  Sharma, P., Khanduja, D. and Sharma, S. (2014) Tribological and Mechanical Behavior of Particulate Aluminum Matrix Composites. Journal of Reinforced Plastics and Composites, 33, 2192-2202.
https://doi.org/10.1177/0731684414556012
[35]  Akbar, H.I., Surojo, E., Ariawan, D., Putra, G.A. and Wibowo, R.T. (2020) Effect of Reinforcement Material on Properties of Manufactured Aluminum Matrix Composite Using Stir Casting Route. Procedia Structural Integrity, 27, 62-68.
https://doi.org/10.1016/j.prostr.2020.07.009
[36]  Li, G., Qu, Y., Yang, Y., Zhou, Q., Liu, X. and Li, R. (2020) Improved Multi-Orientation Dispersion of Short Carbon Fibers in Aluminum Matrix Composites Prepared with Square Crucible by Mechanical Stirring. Journal of Materials Science & Technology, 40, 81-87.
https://doi.org/10.1016/j.jmst.2019.09.009
[37]  Yin, Z., Tao, S., Zhou, X. and Ding, C. (2008) Microstructure and Mechanical Properties of Al2O3-Al Composite Coatings Deposited by Plasma Spraying. Applied Surface Science, 254, 1636-1643.
https://doi.org/10.1016/j.apsusc.2007.07.135
[38]  Ozherelkov, D.Y., Pelevin, I.A., Nalivaiko, A.Y., Zotov, B.O., Fedorenko, L.V. and Gromov, A.A. (2023) Use of Carbon Nanofibers in the Additive Manufacturing of Aluminum Matrix Composites. Russian Metallurgy (Metally), 2023, 1374-1381.
https://doi.org/10.1134/s0036029523100269
[39]  Zhang, Z., Shi, Z., Yang, B., Ge, B., Zhang, X. and Guo, Y. (2019) Preparation and Anisotropic Thermophysical Properties of Sic Honeycomb/Al-Mg-Si Composite via Spontaneous Infiltration. Progress in Natural Science: Materials International, 29, 177-183.
https://doi.org/10.1016/j.pnsc.2019.02.004
[40]  Liu, Y.J., Zhang, Y.S. and Zhang, L.C. (2019) Transformation-Induced Plasticity and High Strength in Beta Titanium Alloy Manufactured by Selective Laser Melting. Materialia, 6, Article 100299.
https://doi.org/10.1016/j.mtla.2019.100299
[41]  Wang, P., Eckert, J., Prashanth, K., Wu, M., Kaban, I., Xi, L., et al. (2020) A Review of Particulate-Reinforced Aluminum Matrix Composites Fabricated by Selective Laser Melting. Transactions of Nonferrous Metals Society of China, 30, 2001-2034.
https://doi.org/10.1016/s1003-6326(20)65357-2
[42]  Koli, D.K., Agnihotri, G. and Purohit, R. (2015) Advanced Aluminium Matrix Composites: The Critical Need of Automotive and Aerospace Engineering Fields. Materials Today: Proceedings, 2, 3032-3041.
https://doi.org/10.1016/j.matpr.2015.07.290
[43]  樊建中, 石力开. 颗粒增强铝基复合材料研究与应用发展[J]. 宇航材料工艺, 2012, 42(1): 1-7.
[44]  Miracle, D.B. (2001) Aeronautical Applications of Metal-Matrix Composites. In: Miracle, D.B. and Donaldson, S.L., Eds., Composites, ASM International, 1043-1049.
https://doi.org/10.31399/asm.hb.v21.a0003485
[45]  Lino Alves, F.J., Baptista, A.M. and Marques, A.T. (2016) Metal and Ceramic Matrix Composites in Aerospace Engineering. In: Rana, S. and Fangueiro, R., Eds., Advanced Composite Materials for Aerospace Engineering, Elsevier, 59-99.
https://doi.org/10.1016/b978-0-08-100037-3.00003-1
[46]  Haghshenas, M. (2016) Metal-Matrix Composites. In: Reference Module in Materials Science and Materials Engineering, Elsevier, 99-117.
https://doi.org/10.1016/b978-0-12-803581-8.03950-3
[47]  Kumar Sharma, A., Bhandari, R., Aherwar, A., Rimašauskienė, R. and Pinca-Bretotean, C. (2020) A Study of Advancement in Application Opportunities of Aluminum Metal Matrix Composites. Materials Today: Proceedings, 26, 2419-2424.
https://doi.org/10.1016/j.matpr.2020.02.516
[48]  乔文明, 李颖. 铝基复合材料的制备及应用[J]. 热加工工艺, 2013, 42(4): 126-128, 130.
[49]  吕刚磊, 朱永刚, 张静, 等. Al-TiO2-Gr复合材料冷镦过程中的致密化与变形研究[J]. 粉末冶金工业, 2022, 32(6): 41-46.
[50]  付永红, 何源, 张冉阳, 等. 颗粒增强铝基复合材料制备及成型技术研究现状[J]. 热加工工艺, 2010, 39(14): 75-79.
[51]  李云平, 李溪滨, 刘如铁, 等. 多次锻造SIC颗粒增强耐热铝合金的研制与性能[J]. 粉末冶金技术, 2000, 18(4): 247-251.
[52]  吴渝玲. 锻造对建筑铝基复合材料性能的影响[J]. 轻合金加工技术, 2017, 45(9): 50-53.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133