|
Pure Mathematics 2025
具有4 × 4 Lax对的NLS方程的黎曼–希尔伯特问题
|
Abstract:
本文首先阐述了具有4 ×4 Lax对的NLS方程的来历、表示形式,并将其表示为矩阵的分块形式,通过对Lax对、特征函数以及对称性的分析,得出全局关系,并表示出
和
的形式,进而构造黎曼–希尔伯特问题,并通过
之间的关系,计算出其跳跃矩阵。
In this paper, the origin and representation of the square matrix NLS equation with a 4 × 4 Lax pair are first expounded, and it is expressed as the block form of the matrix. Through the analysis of lax pair, eigenfunction and symmetry, we establish the global relation and derive the explicit forms of
and
. And then the Riemann-Hilbert problem is constructed, and its jump matrix is calculated through the relationship between
.
[1] | Fokas, A.S. (2002) Integrable Nonlinear Evolution Equations on the Half-Line. Communications in Mathematical Physics, 230, 1-39. https://doi.org/10.1007/s00220-002-0681-8 |
[2] | Lenells, J. (2012) Initial-Boundary Value Problems for Integrable Evolution Equations with 3 × 3 Lax Pairs. Physica D: Nonlinear Phenomena, 241, 857-875. https://doi.org/10.1016/j.physd.2012.01.010 |
[3] | Pitaevskii, L. and Stringari, S. (2016) Bose-Einstein Condensation and Superfluidity. Oxford University Press. |
[4] | Lieb, E.H., Seiringer, R. and Yngvason, J. (2001) Bosons in a Trap: A Rigorous Derivation of the Gross-Pitaevskii Energy Functional. In: Thirring, W., Ed., The Stability of Matter: From Atoms to Stars, Springer, 685-697. https://doi.org/10.1007/978-3-662-04360-8_45 |
[5] | Erdős, L., Schlein, B. and Yau, H. (2007) Rigorous Derivation of the Gross-Pitaevskii Equation. Physical Review Letters, 98, Article ID: 040404. https://doi.org/10.1103/physrevlett.98.040404 |
[6] | Kevrekidis, P.G., Frantzeskakis, D.J. and Carretero-González, R. (2008) Emergent Nonlinear Phenomena in Bose-Einstein Condensates: Theory and Experiment. Springer. |
[7] | Ablowitz, M.J., Prinari, B. and Trubatch, A.D. (2003) Discrete and Continuous Nonlinear Schrödinger Systems. Cambridge University Press. https://doi.org/10.1017/cbo9780511546709 |
[8] | Kevrekidis, P.G., Frantzeskakis, D.J. and Carretero-González, R. (2015) The Defocusing Nonlinear Schrödinger Equation: From Dark Solitons to Vortices and Vortex Rings. SIAM. |
[9] | Manakov, S.V. (1974) On the Theory of Two-Dimensional Stationary Self-Focusing of Electromagnetic Waves. Soviet Physics-JETP, 38, 248-253. |
[10] | Ho, T. (1998) Spinor Bose Condensates in Optical Traps. Physical Review Letters, 81, 742-745. https://doi.org/10.1103/physrevlett.81.742 |
[11] | Kawaguchi, Y. and Ueda, M. (2012) Spinor Bose-Einstein condensates. Physics Reports, 520, 253-381. https://doi.org/10.1016/j.physrep.2012.07.005 |
[12] | Ieda, J., Miyakawa, T. and Wadati, M. (2004) Exact Analysis of Soliton Dynamics in Spinor Bose-Einstein Condensates. Physical Review Letters, 93, Article ID: 194102. https://doi.org/10.1103/physrevlett.93.194102 |
[13] | Uchiyama, M., Ieda, J. and Wadati, M. (2006) Dark Solitons in F = 1 Spinor Bose-Einstein Condensate. Journal of the Physical Society of Japan, 75, Article ID: 064002. https://doi.org/10.1143/jpsj.75.064002 |
[14] | De Monvel, A.B., Fokas, A.S. and Shepelsky, D. (2004) The mKdV Equation on the Half-Line. Journal of the Institute of Mathematics of Jussieu, 3, 139-164. |