全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Non-Thermal Plasma Desorption of Copper (II) Ions from a Cu(II)-Clay Composite and Recuperation of the Adsorbent Part B

DOI: 10.4236/gep.2025.135007, PP. 93-106

Keywords: Desorption, Non-Thermal Plasma, Clay, Copper

Full-Text   Cite this paper   Add to My Lib

Abstract:

The regeneration of the adsorbents and recovery of heavy metals are of crucial importance in assessing their potential for commercial application. In this study, Non-thermal plasma (NTP) Glidarc was applied as desorbing agent for Cu(II) desorption from Cu(II)-clay composite. The kinetics was also studied and the comparison with other desorbing agents was performed. Results showed that, NTP Glidarc efficiently removed adsorbed Cu(II). Cu(II) desorption process by NTP occurred following three major steps: a fast initial desorption step followed by a slow desorption step and finally the equilibrium. The increase of the stirring rate and the Cu(II)-clay composite dosage also increases the efficiency of desorption. The equilibrium was reached after 180 min and 99.79% of Cu(II) was recovered. A comparison with other desorbing agents followed the order: plasma > HCl > CaCl2 > NaCl. Six adsorption-desorption cycles did not significantly affect the adsorption capacity of the clay. Desorption with NTP and HCl fitted well the first order, Elovich, parabolic diffusion and modified Freundlich kinetic models. The time of half reaction was 45 min for NTP and 61 min for HCl. NTP can thus be considered as an efficient heavy metal desorption strategy from adsorbents.

References

[1]  Babel, S., & Kurniawan, T. A. (2003). Low-Cost Adsorbents for Heavy Metals Uptake from Contaminated Water: A Review. Journal of Hazardous Materials, 97, 219-243.
https://doi.org/10.1016/s0304-3894(02)00263-7
[2]  Bayuo, J., Abukari, M. A., & Pelig-Ba, K. B. (2020). Desorption of Chromium (VI) and Lead (II) Ions and Regeneration of the Exhausted Adsorbent. Applied Water Science, 10, Article No. 171.
https://doi.org/10.1007/s13201-020-01250-y
[3]  Benstaali, B., Boubert, P., Cheron, B. G., Addou, A., & Brisset, J. L. (2002). Density and Rotational Temperature Measurements of the OH˚ and NO˚ Radicals Produced by a Gliding Arc in Humid Air. Plasma Chemistry and Plasma Processing, 22, 553-571.
https://doi.org/10.1023/a:1021371529955
[4]  Benstaali, B., Cheron, B., Addou, A., & Brisset, J-L. (1999). Spectral Investigation of a Gliding Arc in Humid Air: A Key for Chemical Applications. In International Union of Pure and Applied Chemistry (Ed.), Proceedings of the IUPAC Congress ISPC-14 (pp. 939-944). De Gruyter.
[5]  Bhattacharyya, K. G., & Gupta, S. S. (2008). Adsorption of a Few Heavy Metals on Natural and Modified Kaolinite and Montmorillonite: A Review. Advances in Colloid and Interface Science, 140, 114-131.
https://doi.org/10.1016/j.cis.2007.12.008
[6]  Brisset, J., & Hnatiuc, E. (2012). Peroxynitrite: A Re-Examination of the Chemical Properties of Non-Thermal Discharges Burning in Air over Aqueous Solutions. Plasma Chemistry and Plasma Processing, 32, 655-674.
https://doi.org/10.1007/s11090-012-9384-x
[7]  Camp, R. T. (1964). Water and Its Impurities (2nd Ed.). Reinhold.
[8]  Chien, S. H., & Clayton, W. R. (1980). Application of Elovich Equation to the Kinetics of Phosphate Release and Sorption in Soils. Soil Science Society of America Journal, 44, 265-268.
https://doi.org/10.2136/sssaj1980.03615995004400020013x
[9]  Czernichowski, A., Nassar, H., Ranaivosoloarimanana, A., Fridman, A. A., Simek, M., Musiol, K. et al. (1996). Spectral and Electrical Diagnostics of Gliding Arc. Acta Physica Polonica A, 89, 595-603.
https://doi.org/10.12693/aphyspola.89.595
[10]  Demirbas, A. (2008). Heavy Metal Adsorption onto Agro-Based Waste Materials: A Review. Journal of Hazardous Materials, 157, 220-229.
https://doi.org/10.1016/j.jhazmat.2008.01.024
[11]  Dias, J. M., Alvim-Ferraz, M. C. M., Almeida, M. F., Rivera-Utrilla, J., & Sánchez-Polo, M. (2007). Waste Materials for Activated Carbon Preparation and Its Use in Aqueous-Phase Treatment: A Review. Journal of Environmental Management, 85, 833-846.
https://doi.org/10.1016/j.jenvman.2007.07.031
[12]  Elkhatib, E. A., Mahdy, A. M., & Barakat, N. H. (2007a). Thermodynamics of Copper Desorption from Soils as Affected by Citrate and Succinate. Soil and Water Research, 2, 135-140.
https://doi.org/10.17221/2110-swr
[13]  Elkhatib, E. A., Mahdy, A. M., Saleh, M. E., & Barakat, N. H. (2007b). Kinetics of Copper Desorption from Soils as Affected by Different Organic Ligands. International Journal of Environmental Science & Technology, 4, 331-338.
https://doi.org/10.1007/bf03326290
[14]  Fouodjouo, M., Fotouo-Nkaffo, H., Laminsi, S., Cassini, F. A., de Brito-Benetoli, L. O., & Debacher, N. A. (2017). Adsorption of Copper (II) Onto Cameroonian Clay Modified by Non-Thermal Plasma: Characterization, Chemical Equilibrium and Thermodynamic Studies. Applied Clay Science, 142, 136-144.
https://doi.org/10.1016/j.clay.2016.09.028
[15]  Fu, F., & Wang, Q. (2011). Removal of Heavy Metal Ions from Wastewaters: A Review. Journal of Environmental Management, 92, 407-418.
https://doi.org/10.1016/j.jenvman.2010.11.011
[16]  Ghosh, T., Krushnamurthy, K., Panigrahi, A. K., Dutta, A., Subrahmanyam, C., Vanjari, S. R. K. et al. (2015). Facile Non Thermal Plasma Based Desorption of Self Assembled Monolayers for Achieving Low Temperature and Low Pressure Cu-Cu Thermo-Compression Bonding. RSC Advances, 5, 103643-103648.
https://doi.org/10.1039/c5ra17735a
[17]  Gupta, V. K., & Rastogi, A. (2008). Sorption and Desorption Studies of Chromium(VI) from Nonviable Cyanobacterium Nostoc muscorum Biomass. Journal of Hazardous Materials, 154, 347-354.
https://doi.org/10.1016/j.jhazmat.2007.10.032
[18]  Johnson, R. E. (1987). Mechanisms for the Desorption of Large Organic Molecules. International Journal of Mass Spectrometry and Ion Processes, 78, 357-392.
https://doi.org/10.1016/0168-1176(87)87060-x
[19]  Kim, H. H., Kim, J. H., & Ogata, A. (2008). Adsorption and Oxygen Plasma-Driven Catalysis for Total Oxidation of VOCs. International Journal of Plasma Environmental Science and Technology, 2, 106-112.
[20]  Kuo, S., & Lotse, E. G. (1973). Kinetics of Phosphate Adsorption and Desorption by Hematite and Gibbsite1. Soil Science, 116, 400-406.
https://doi.org/10.1097/00010694-197312000-00002
[21]  Kwon, T., & Jeon, C. (2012). Desorption and Regeneration Characteristics for Previously Adsorbed Indium Ions to Phosphorylated Sawdust. Environmental Engineering Research, 17, 65-67.
https://doi.org/10.4491/eer.2012.17.2.065
[22]  Lo, W., Ng, L. M., Chua, H., Yu, P. H. F., Sin, S. N., & Wong, P. (2003). Biosorption and Desorption of Copper (II) Ions by Bacillus sp. In B. H. Davison, J. W. Lee, M. Finkelstein, & J. D. McMillan (Eds.), Biotechnology for Fuels and Chemicals (pp. 581-591). Humana Press.
https://doi.org/10.1007/978-1-4612-0057-4_48
[23]  Ma, F., Zhu, Y., Wu, B., Zhang, Q., Xu, D., Xu, J. et al. (2019). Degradation of DDTs in Thermal Desorption Off-Gas by Pulsed Corona Discharge Plasma. Chemosphere, 233, 913-919.
https://doi.org/10.1016/j.chemosphere.2019.05.292
[24]  Motaghian, H. R., & Hosseinpur, A. R. (2013). Zinc Desorption Kinetics in Wheat (Triticum aestivum L.) Rhizosphere in Some Sewage Sludge Amended Soils. Journal of Soil Science and Plant Nutrition, 13, 664-678.
https://doi.org/10.4067/s0718-95162013005000053
[25]  Njoyim-Tamungang, E., Laminsi, S., Ghogomu, P., Njopwouo, D., & Brisset, J.-L. (2011). Pollution Control of Surface Waters by Coupling Gliding Discharge Treatment with Incorporated Oyster Shell Powder. Chemical Engineering Journal, 173, 303-308.
https://doi.org/10.1016/j.cej.2011.07.021
[26]  Okubo, M., Tanioka, G., Kuroki, T., & Yamamoto, T. (2002). No/Sub x/ Concentration Using Adsorption and Nonthermal Plasma Desorption. IEEE Transactions on Industry Applications, 38, 1196-1203.
https://doi.org/10.1109/tia.2002.802916
[27]  Pinard, L., & Batiot-Dupeyrat, C. (2024). Non-Thermal Plasma for Catalyst Regeneration: A Review. Catalysis Today, 426, Article 114372.
https://doi.org/10.1016/j.cattod.2023.114372
[28]  Reyhanitabar, A., & Karimian, N. (2008). Kinetics of Copper Desorption of Selected Calcareous Soils from Iran. American-Eurasian Journal of Agricultural & Environmental Sciences, 4, 287-293.
[29]  Shiau, C. H., Pan, K. L., Yu, S. J., Yan, S. Y., & Chang, M. B. (2017). Desorption of Isopropyl Alcohol from Adsorbent with Non-Thermal Plasma. Environmental Technology, 38, 2314-2323.
https://doi.org/10.1080/09593330.2016.1259354
[30]  Sivachandiran, L., Thevenet, F., & Rousseau, A. (2013b). Non-Thermal Plasma Assisted Regeneration of Acetone Adsorbed Tio2 Surface. Plasma Chemistry and Plasma Processing, 33, 855-871.
https://doi.org/10.1007/s11090-013-9463-7
[31]  Sivachandiran, L., Thevenet, F., & Rousseau, A. (2014). Regeneration of Isopropyl Alcohol Saturated Mnxoy Surface: Comparison of Thermal, Ozonolysis and Non-Thermal Plasma Treatments. Chemical Engineering Journal, 246, 184-195.
https://doi.org/10.1016/j.cej.2014.02.058
[32]  Sivachandiran, L., Thevenet, F., Gravejat, P., & Rousseau, A. (2013a). Isopropanol Saturated Tio2 Surface Regeneration by Non-Thermal Plasma: Influence of Air Relative Humidity. Chemical Engineering Journal, 214, 17-26.
https://doi.org/10.1016/j.cej.2012.10.022
[33]  Srour, H., Devers, E., Mekki-Berrada, A., Toufaily, J., Hamieh, T., Batiot-Dupeyrat, C. et al. (2021). Regeneration of an Aged Hydrodesulfurization Catalyst: Conventional Thermal vs Non-Thermal Plasma Technology. Fuel, 306, Article 121674.
https://doi.org/10.1016/j.fuel.2021.121674
[34]  Tsé, K. K. C., & Lo, S. (2002). Desorption Kinetics of PCP-Contaminated Soil: Effect of Temperature. Water Research, 36, 284-290.
https://doi.org/10.1016/s0043-1354(01)00191-9
[35]  Vierck, S. W., & Leclerc, C. A. (2017). A Temperature Programmed Desorption Study of Non-Thermal Plasma Modified γ-Al2O3. Advanced Powder Technology, 28, 1792-1796.
https://doi.org/10.1016/j.apt.2017.04.020
[36]  Wambu, E. W., Muthakia, G. K., Shiundu, P. M., & Wa-Thiongo, K. J. (2009). Kinetics of Copper Desorption from Regenerated Spent Bleaching Earth. American-Eurasian Journal of Scientific Research, 4, 317-323.
[37]  Wankasi, D., Horsfall Jnr., M., & Spiff, A. I. (2005). Sorption Kinetics of Pb2+ and Cu2+ Ions from Aqueous Solution by Nipah Palm (Nypa fruticans Wurmb) Shoot Biomass. Electronic Journal of Biotechnology, 9, 587-592.
[38]  Wu, A. J., Zhang, H., Li, X. D., Lu, S. Y., Du, C. M., & Ya, J. H. (2015). Determination of Spectroscopic Temperatures and Electron Density in Rotating Gliding Arc Discharge. IEEE Transactions on Plasma Science, 43, 836-845.
https://doi.org/10.1109/tps.2015.2394441
[39]  Zeng, X., Xu, Y., Zhang, B., Luo, G., Sun, P., Zou, R. et al. (2017). Elemental Mercury Adsorption and Regeneration Performance of Sorbents Femno X Enhanced via Non-Thermal Plasma. Chemical Engineering Journal, 309, 503-512.
https://doi.org/10.1016/j.cej.2016.10.047

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133