Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the selective degeneration of dopaminergic neurons in the substantia nigra pars compacta, resulting in a spectrum of motor and non-motor symptoms. Among the critical pathological mechanisms in PD, oxidative stress and mitochondrial dysfunction have emerged as significant contributors to neuronal death. Reactive oxygen species (ROS), produced during dopamine metabolism and mitochondrial respiration, lead to oxidative damage, while mitochondrial dysfunction exacerbates energy deficits and disrupts cellular homeostasis. The interplay between these processes engenders a detrimental cycle of neurodegeneration. Recent investigations have concentrated on the potential of antioxidants, including polyphenols, flavonoids, and certain vitamins, for their potential to mitigate both oxidative stress and mitochondrial dysfunction. These compounds exhibit neuroprotective properties by scavenging ROS, preserving mitochondrial integrity, and promoting mitophagy. Notably, antioxidants such as curcumin, resveratrol, and quercetin have demonstrated efficacy in experimental models of PD, reducing ROS levels, restoring mitochondrial function, and preventing neuronal loss. Furthermore, advancements in delivery systems have enhanced the bioavailability of these antioxidants, amplifying their therapeutic potential. This review delves into the dual pathological roles of oxidative stress and mitochondrial dysfunction in PD, elucidating the multifaceted protective effects of natural antioxidants. In this review, we summarize the current literature on natural antioxidants’ role in oxidative stress and mitochondrial dysfunction in PD and discuss possible therapeutic approaches targeting this interaction
Bhidayasiri, R., Sringean, J., Phumphid, S., Anan, C., Thanawattano, C., Deoisres, S., et al. (2024) The Rise of Parkinson’s Disease Is a Global Challenge, but Efforts to Tackle This Must Begin at a National Level: A Protocol for National Digital Screening and “eat, Move, Sleep” Lifestyle Interventions to Prevent or Slow the Rise of Non-Communicable Diseases in Thailand. Frontiers in Neurology, 15, Article 1386608. https://doi.org/10.3389/fneur.2024.1386608
[3]
Bloem, B.R., Okun, M.S. and Klein, C. (2021) Parkinson’s Disease. The Lancet, 397, 2284-2303. https://doi.org/10.1016/s0140-6736(21)00218-x
[4]
Soni, R., Delvadia, P., Joharapurkar, A. and Shah, J. (2023) Uncovering Novel Therapeutic Targets for Parkinson’s Disease. ACS Chemical Neuroscience, 14, 1935-1949. https://doi.org/10.1021/acschemneuro.3c00084
[5]
Rasool, A., Manzoor, R., Kaleem Ullah,, Afzal, R., Ul-Haq, A., Imran, H., et al. (2024) Oxidative Stress and Dopaminergic Metabolism: A Major PD Pathogenic Mechanism and Basis of Potential Antioxidant Therapies. CNS & Neurological Disorders—Drug Targets, 23, 852-864. https://doi.org/10.2174/1871527322666230609141519
[6]
Lim, H., Kim, J., Moon, B.C., Ryu, S.M., Lee, J. and Park, G. (2019) Batryticatus Bombyx Protects Dopaminergic Neurons against MPTP-Induced Neurotoxicity by Inhibiting Oxidative Damage. Antioxidants, 8, Article 574. https://doi.org/10.3390/antiox8120574
[7]
Li, D., Yao, M., Dong, Y., Tang, M., Chen, W., Li, G., et al. (2014) Guanosine Exerts Neuroprotective Effects by Reversing Mitochondrial Dysfunction in a Cellular Model of Parkinson’s Disease. InternationalJournalofMolecularMedicine, 34, 1358-1364. https://doi.org/10.3892/ijmm.2014.1904
[8]
Asemi-Rad, A., Moafi, M., Aliaghaei, A., Abbaszadeh, H., Abdollahifar, M., Ebrahimi, M., et al. (2022) The Effect of Dopaminergic Neuron Transplantation and Melatonin Co-Administration on Oxidative Stress-Induced Cell Death in Parkinson’s Disease. MetabolicBrainDisease, 37, 2677-2685. https://doi.org/10.1007/s11011-022-01021-5
[9]
Malpartida, A.B., Williamson, M., Narendra, D.P., Wade-Martins, R. and Ryan, B.J. (2021) Mitochondrial Dysfunction and Mitophagy in Parkinson’s Disease: From Mechanism to Therapy. Trends in Biochemical Sciences, 46, 329-343. https://doi.org/10.1016/j.tibs.2020.11.007
[10]
Schapira, A.H. (2008) Mitochondria in the Aetiology and Pathogenesis of Parkinson’s Disease. The Lancet Neurology, 7, 97-109. https://doi.org/10.1016/s1474-4422(07)70327-7
[11]
Barnhoorn, S., Milanese, C., Li, T., Dons, L., Ghazvini, M., Sette, M., et al. (2024) Orthogonal Analysis of Mitochondrial Function in Parkinson’s Disease Patients. Cell Death & Disease, 15, Article 243. https://doi.org/10.1038/s41419-024-06617-6
[12]
Mittal, P., Dhankhar, S., Chauhan, S., Garg, N., Bhattacharya, T., Ali, M., et al. (2023) A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson’s Disease. Pharmaceuticals, 16, Article 908. https://doi.org/10.3390/ph16070908
[13]
Chen, Q., Ruan, D., Shi, J., Du, D. and Bian, C. (2023) The Multifaceted Roles of Natural Products in Mitochondrial Dysfunction. FrontiersinPharmacology, 14, Article 1093038. https://doi.org/10.3389/fphar.2023.1093038
[14]
Lard, M., Dhanawat, M., Mehta, D., Das, R., Gupta, S., Morsy, M.A., Nair, A.B., Matouk, A.I. and Gupta, N. (2022) Effects of Curcumin, Quercetin, and Their Combinationson Neurodegeneration and Motor Impairment in Rotenone-Induced Parkinson’s Disease in Rats.
[15]
Yoshikawa, T. and Naito, Y. (2002) What Is Oxidative Stress? Japan Medical Association Journal, 45, 271-276.
[16]
Goel, R. and Chaudhary, R. (2020) Effect of Daidzein on Parkinson Disease Induced by Reserpine in Rats. Brazilian Journal of Pharmaceutical Sciences, 56, e18388. https://doi.org/10.1590/s2175-97902019000318388
[17]
Joglar, B., Rodriguez-Pallares, J., Rodriguez-Perez, A.I., Rey, P., Guerra, M.J. and Labandeira-Garcia, J.L. (2009) The Inflammatory Response in the MPTP Model of Parkinson’s Disease Is Mediated by Brain Angiotensin: Relevance to Progression of the Disease. Journal of Neurochemistry, 109, 656-669. https://doi.org/10.1111/j.1471-4159.2009.05999.x
[18]
Trudler, D., Nash, Y. and Frenkel, D. (2015) New Insights on Parkinson’s Disease Genes: The Link between Mitochondria Impairment and Neuroinflammation. Journal of Neural Transmission, 122, 1409-1419. https://doi.org/10.1007/s00702-015-1399-z
[19]
Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E.R. and Mizuno, Y. (1996) Immunohistochemical Detection of 4-Hydroxynonenal Protein Adducts in Parkinson Disease. Proceedings of the National Academy of Sciences, 93, 2696-2701. https://doi.org/10.1073/pnas.93.7.2696
[20]
Kruman, I., Bruce-Keller, A.J., Bredesen, D., Waeg, G. and Mattson, M.P. (1997) Evidence That 4-Hydroxynonenal Mediates Oxidative Stress-Induced Neuronal Apoptosis. The Journal of Neuroscience, 17, 5089-5100. https://doi.org/10.1523/jneurosci.17-13-05089.1997
[21]
Hunot, S., Brugg, B., Ricard, D., Michel, P.P., Muriel, M., Ruberg, M., et al. (1997) Nuclear Translocation of NF-κB Is Increased in Dopaminergic Neurons of Patients with Parkinson Disease. Proceedings of the National Academy of Sciences, 94, 7531-7536. https://doi.org/10.1073/pnas.94.14.7531
[22]
Ischiropoulos, H. and Beckman, J.S. (2003) Oxidative Stress and Nitration in Neurodegeneration: Cause, Effect, or Association? Journal of Clinical Investigation, 111, 163-169. https://doi.org/10.1172/jci200317638
[23]
de Lau, L.M.L., Koudstaal, P.J., Hofman, A. and Breteler, M.M.B. (2005) Serum Uric Acid Levels and the Risk of Parkinson Disease. Annals of Neurology, 58, 797-800. https://doi.org/10.1002/ana.20663
[24]
Henchcliffe, C. and Beal, M.F. (2008) Mitochondrial Biology and Oxidative Stress in Parkinson Disease Pathogenesis. Nature Clinical Practice Neurology, 4, 600-609. https://doi.org/10.1038/ncpneuro0924
Tang, V., Young, A., Tan, H., Beasley, C. and Wang, J. (2013) Glucocorticoids Increase Protein Carbonylation and Mitochondrial Dysfunction. Hormone and Metabolic Research, 45, 709-715. https://doi.org/10.1055/s-0033-1345119
[27]
Hirsch, E.C. and Hirsch, E.C. (1993) Does Oxidative Stress Participate in Nerve Cell Death in Parkinson’s Disease? European Neurology, 33, 52-59. https://doi.org/10.1159/000118538
[28]
Aufschnaiter, A. and Ott, M. (2022) Fließbandfertigung von Atmungskettenkomplexen in Mitochondrien. BIOspektrum, 28, 366-369. https://doi.org/10.1007/s12268-022-1783-9
[29]
Vishwakarma, A., Chikhi, L., Todkar, K., Ouellet, M. and Germain, M. (2024) Mitochondrial Dysfunction alters Early Endosome Distribution and Cargo Trafficking via ROS-Mediated Microtubule Reorganization.
[30]
Keane, P.C., Kurzawa, M., Blain, P.G. and Morris, C.M. (2011) Mitochondrial Dysfunction in Parkinson’s Disease. Parkinson’s Disease, 2011, 1-18. https://doi.org/10.4061/2011/716871
[31]
Kim, E., Leverage, W.T., Liu, Y., Panzella, L., Alfieri, M.L., Napolitano, A., et al. (2016) Paraquat-Melanin Redox-Cycling: Evidence from Electrochemical Reverse Engineering. ACS Chemical Neuroscience, 7, 1057-1067. https://doi.org/10.1021/acschemneuro.6b00007
[32]
Sanders, L.H., McCoy, J., Hu, X., Mastroberardino, P.G., Dickinson, B.C., Chang, C.J., et al. (2014) Mitochondrial DNA Damage: Molecular Marker of Vulnerable Nigral Neurons in Parkinson’s Disease. Neurobiology of Disease, 70, 214-223. https://doi.org/10.1016/j.nbd.2014.06.014
[33]
Gomes, L.C., Benedetto, G.D. and Scorrano, L. (2011) During Autophagy Mitochondria Elongate, Are Spared from Degradation and Sustain Cell Viability. Nature Cell Biology, 13, 589-598. https://doi.org/10.1038/ncb2220
[34]
Pontes, M.H., Sevostyanova, A. and Groisman, E.A. (2015) When Too Much ATP Is Bad for Protein Synthesis. Journal of Molecular Biology, 427, 2586-2594. https://doi.org/10.1016/j.jmb.2015.06.021
[35]
Blesa, J., Trigo-Damas, I., Quiroga-Varela, A. and Jackson-Lewis, V.R. (2015) Oxidative Stress and Parkinson’s Disease. Frontiers in Neuroanatomy, 9, Article 91. https://doi.org/10.3389/fnana.2015.00091
[36]
Papkovskaia, T.D., Chau, K., Inesta-Vaquera, F., Papkovsky, D.B., Healy, D.G., Nishio, K., et al. (2012) G2019S Leucine-Rich Repeat Kinase 2 Causes Uncoupling Protein-Mediated Mitochondrial Depolarization. Human Molecular Genetics, 21, 4201-4213. https://doi.org/10.1093/hmg/dds244
[37]
Martinez, T.N. and Greenamyre, J.T. (2012) Toxin Models of Mitochondrial Dysfunction in Parkinson’s Disease. Antioxidants & Redox Signaling, 16, 920-934. https://doi.org/10.1089/ars.2011.4033
[38]
Smith, A.M., Depp, C., Ryan, B.J., Johnston, G.I., Alegre-Abarrategui, J., Evetts, S., etal. (2018) Mitochondrial Dysfunction and Increased Glycolysis in Prodromal and Early Parkinson’s Blood Cells. Movement Disorders, 33, 1580-1590. https://doi.org/10.1002/mds.104
[39]
Navas, L.E. and Carnero, A. (2022) Nicotinamide Adenine Dinucleotide (NAD) Metabolism as a Relevant Target in Cancer. Cells, 11, Article 2627. https://doi.org/10.3390/cells11172627
[40]
Zhou, Z.D. and Tan, E.K. (2020) Oxidized Nicotinamide Adenine Dinucleotide-Dependent Mitochondrial Deacetylase Sirtuin-3 as a Potential Therapeutic Target of Parkinson’s Disease. Ageing Research Reviews, 62, Article 101107. https://doi.org/10.1016/j.arr.2020.101107
[41]
Park, J., Burgess, J.D., Faroqi, A.H., DeMeo, N.N., Fiesel, F.C., Springer, W., et al. (2020) Alpha-Synuclein-Induced Mitochondrial Dysfunction Is Mediated via a Sirtuin 3-Dependent Pathway. Molecular Neurodegeneration, 15, Article No. 5. https://doi.org/10.1186/s13024-019-0349-x
[42]
Zhang, X., Li, J., Fu, M., Geng, X., et al. (2023) Mitochondrial Dysfunction Drives the Pathogenesis of Pulmonary Arterial Hypertension: Insights from a Multi-Omics Investigation.
[43]
Larsen, S.B., Hanss, Z. and Krüger, R. (2018) The Genetic Architecture of Mitochondrial Dysfunction in Parkinson’s Disease. Cell and Tissue Research, 373, 21-37. https://doi.org/10.1007/s00441-017-2768-8
[44]
Subramaniam, S.R. and Chesselet, M. (2013) Mitochondrial Dysfunction and Oxidative Stress in Parkinson’s Disease. Progress in Neurobiology, 106, 17-32. https://doi.org/10.1016/j.pneurobio.2013.04.004
[45]
Chang, E. and Wang, J. (2021) Brain-Derived Neurotrophic Factor Attenuates Cognitive Impairment and Motor Deficits in a Mouse Model of Parkinson’s Disease. Brain and Behavior, 11, e2251. https://doi.org/10.1002/brb3.2251
[46]
Hiona, A., Sanz, A., Kujoth, G.C., Pamplona, R., Seo, A.Y., Hofer, T., et al. (2010) Mitochondrial DNA Mutations Induce Mitochondrial Dysfunction, Apoptosis and Sarcopenia in Skeletal Muscle of Mitochondrial DNA Mutator Mice. PLOS ONE, 5, e11468. https://doi.org/10.1371/journal.pone.0011468
[47]
Qi, R., Sammler, E., Gonzalez-Hunt, C.P., Barraza, I., Pena, N., Rouanet, J.P., et al. (2023) A Blood-Based Marker of Mitochondrial DNA Damage in Parkinson’s Disease. Science Translational Medicine, 15, eabo1557. https://doi.org/10.1126/scitranslmed.abo1557
[48]
Mikhailov, N. and Hämäläinen, R.H. (2022) Modulating Mitochondrial DNA Heteroplasmy with Mitochondrially Targeted Endonucleases. Annals of Biomedical Engineering, 52, 2627-2640. https://doi.org/10.1007/s10439-022-03051-7
[49]
Zhang, L., Dai, L. and Li, D. (2021) Mitophagy in Neurological Disorders. Journal of Neuroinflammation, 18, Article No. 297. https://doi.org/10.1186/s12974-021-02334-5
[50]
Burbulla, L.F., Song, P., Mazzulli, J.R., Zampese, E., Wong, Y.C., Jeon, S., et al. (2017) Dopamine Oxidation Mediates Mitochondrial and Lysosomal Dysfunction in Parkinson’s Disease. Science, 357, 1255-1261. https://doi.org/10.1126/science.aam9080
[51]
Lu, W., Karuppagounder, S.S., Springer, D.A., Allen, M.D., Zheng, L., Chao, B., et al. (2014) Genetic Deficiency of the Mitochondrial Protein PGAM5 Causes a Parkinson’s-Like Movement Disorder. Nature Communications, 5, Article No. 4930. https://doi.org/10.1038/ncomms5930
[52]
Zhang, Y., Wu, J., Jin, W., Shen, M., Yin, S., Lai, X., et al. (2022) Nonreceptor Tyrosine Kinase C-Abl-Mediated PHB2 Phosphorylation Aggravates Mitophagy Disorder in Parkinson’s Disease Model. Oxidative Medicine and Cellular Longevity, 2022, 1-20. https://doi.org/10.1155/2022/9233749
[53]
Perrone, M., Patergnani, S., Di Mambro, T., Palumbo, L., Wieckowski, M.R., Giorgi, C., et al. (2023) Calcium Homeostasis in the Control of Mitophagy. Antioxidants & Redox Signaling, 38, 591-598. https://doi.org/10.1089/ars.2022.0122
[54]
Gandhi, S., Wood-Kaczmar, A., Yao, Z., Plun-Favreau, H., Deas, E., Klupsch, K., etal. (2009) Pink1-Associated Parkinson’s Disease Is Caused by Neuronal Vulnerability to Calcium-Induced Cell Death. Molecular Cell, 33, 627-638. https://doi.org/10.1016/j.molcel.2009.02.013
[55]
Ludtmann, M.H.R. and Abramov, A.Y. (2018) Mitochondrial Calcium Imbalance in Parkinson’s Disease. Neuroscience Letters, 663, 86-90. https://doi.org/10.1016/j.neulet.2017.08.044
[56]
Angelova, P.R. and Abramov, A.Y. (2016) Functional Role of Mitochondrial Reactive Oxygen Species in Physiology. Free Radical Biology and Medicine, 100, 81-85. https://doi.org/10.1016/j.freeradbiomed.2016.06.005
[57]
Vasan, K., Clutter, M., Fernandez Dunne, S., George, M.D., Luan, C., Chandel, N.S., et al. (2022) Genes Involved in Maintaining Mitochondrial Membrane Potential Upon Electron Transport Chain Disruption. FrontiersinCellandDevelopmentalBiology, 10, Article 781558. https://doi.org/10.3389/fcell.2022.781558
[58]
Matsuda, N., Sato, S., Shiba, K., Okatsu, K., Saisho, K., Gautier, C.A., et al. (2010) PINK1 Stabilized by Mitochondrial Depolarization Recruits Parkin to Damaged Mitochondria and Activates Latent Parkin for Mitophagy. Journal of Cell Biology, 189, 211-221. https://doi.org/10.1083/jcb.200910140
[59]
Han, J., Kim, J. and Son, J.H. (2014) Mitochondrial Homeostasis Molecules: Regulation by a Trio of Recessive Parkinson’s Disease Genes. Experimental Neurobiology, 23, 345-351. https://doi.org/10.5607/en.2014.23.4.345
[60]
Payne, T., Burgess, T., Bradley, S., Roscoe, S., Sassani, M., Dunning, M.J., et al. (2023) Multimodal Assessment of Mitochondrial Function in Parkinson’s Disease. Brain, 147, 267-280. https://doi.org/10.1093/brain/awad364
[61]
Sun, C., Liu, X., Di, C., Wang, Z., Mi, X., Liu, Y., et al. (2017) Mitoq Regulates Autophagy by Inducing a Pseudo-Mitochondrial Membrane Potential. Autophagy, 13, 730-738. https://doi.org/10.1080/15548627.2017.1280219
[62]
Udeozor, P.A., Ibiam, U.A., Uti, D.E., Umoru, G.U., Onwe, E.N., Mbonu, F.O., et al. (2022) Antioxidant and Anti-Anemic Effects of Ethanol Leaf Extracts of Mucuna poggei and Telfairia occidentalis in Phenyl-Hydrazine-Induced Anemia in Wistar Albino Rats. Ibnosina Journal of Medicine and Biomedical Sciences, 14, 116-126. https://doi.org/10.1055/s-0042-1756684
[63]
Hasani-Ranjbar, S., Larijani, B. and Abdollahi, M. (2009) A Systematic Review of the Potential Herbal Sources of Future Drugs Effective in Oxidant-Related Diseases. Inflammation & Allergy-Drug Targets, 8, 2-10. https://doi.org/10.2174/187152809787582561
[64]
Guler, A. and Okmen, G. (2024) The Antimicrobial Activity of Hypericum Perforatum L. Flower Extract against Food Pathogens and Its Non-Enzymatic Antioxidant Activity. Kragujevac Journal of Science, 46, 137-150. https://doi.org/10.5937/kgjsci2400001g
[65]
Sahoo, M.K. (2023) An Overview on Natural Antioxidants Derived from Food Sources. In: Advanced Concepts in Pharmaceutical Research Vol. 2, B P International (a part of Science-Domain International), 165-178. https://doi.org/10.9734/bpi/acpr/v2/6756b
[66]
Fandy, S.J. (2022) Grape Seed Extract’s Neuroprotective Effect and Parkinson’s Disease: A Systematic Review. Malang Neurology Journal, 9, 44-51. https://doi.org/10.21776/ub.mnj.2023.009.01.9
[67]
Magalingam, K.B., Radhakrishnan, A. and Haleagrahara, N. (2014) Protective Effects of Flavonolisoquercitrin, against 6-Hydroxy Dopamine (6-OHDA)—Induced Toxicity in PC12 Cells. BMC Research Notes, 7, Article No. 49. https://doi.org/10.1186/1756-0500-7-49
[68]
Abrahams, S., Miller, H.C., Lombard, C., van der Westhuizen, F.H. and Bardien, S. (2021) Curcumin Pre-Treatment May Protect against Mitochondrial Damage in Lrrk2-Mutant Parkinson’s Disease and Healthy Control Fibroblasts. Biochemistry and Biophysics Reports, 27, Article 101035. https://doi.org/10.1016/j.bbrep.2021.101035
[69]
Hou, L., Sun, F., Huang, R., Sun, W., Zhang, D. and Wang, Q. (2019) Inhibition of NADPH Oxidase by Apocynin Prevents Learning and Memory Deficits in a Mouse Parkinson’s Disease Model. RedoxBiology, 22, Article 101134. https://doi.org/10.1016/j.redox.2019.101134
[70]
Sharma, S., Narang, J.K., Ali, J. and Baboota, S. (2016) Synergistic Antioxidant Action of Vitamin E and Rutin SNEDDS in Ameliorating Oxidative Stress in a Parkinson’s Disease Model. Nanotechnology, 27, Article 375101. https://doi.org/10.1088/0957-4484/27/37/375101
[71]
Wang, X., Feng, S., Wang, Y., Zhang, N., Guo, Z., Yan, X., et al. (2022) Mangiferin, a Natural Glucoxilxanthone, Inhibits Mitochondrial Dynamin-Related Protein 1 and Relieves Aberrant Mitophagic Proteins in Mice Model of Parkinson’s Disease. Phytomedicine, 104, Article 154281. https://doi.org/10.1016/j.phymed.2022.154281
[72]
Zhang, S., Wang, S., Shi, X. and Feng, X. (2020) Polydatin Alleviates Parkinsonism in MPTP-Model Mice by Enhancing Glycolysis in Dopaminergic Neurons. Neurochemistry International, 139, Article 104815. https://doi.org/10.1016/j.neuint.2020.104815
[73]
Xia, X., Li, H., Xu, X., Zhao, G. and Du, M. (2023) Facilitating Pro-Survival Mitophagy for Alleviating Parkinson’s Disease via Sequence-Targeted Lycopene Nanodots. ACS Nano, 17, 17979-17995. https://doi.org/10.1021/acsnano.3c04308
[74]
Qiu, J., Chen, Y., Zhuo, J., Zhang, L., Liu, J., Wang, B., et al. (2022) Urolithin a Promotes Mitophagy and Suppresses NLRP3 Inflammasome Activation in Lipopolysaccharide-Induced BV2 Microglial Cells and MPTP-Induced Parkinson’s Disease Model. Neuropharmacology, 207, Article 108963. https://doi.org/10.1016/j.neuropharm.2022.108963
[75]
Fan, H., Li, Y., Sun, M., Xiao, W., Song, L., Wang, Q., et al. (2021) Hyperoside Reduces Rotenone-Induced Neuronal Injury by Suppressing Autophagy. Neurochemical Research, 46, 3149-3158. https://doi.org/10.1007/s11064-021-03404-z
[76]
Zhang, X., Du, L., Zhang, W., Yang, Y., Zhou, Q. and Du, G. (2017) Therapeutic Effects of Baicalein on Rotenone-Induced Parkinson’s Disease through Protecting Mitochondrial Function and Biogenesis. Scientific Reports, 7, Article No. 9968. https://doi.org/10.1038/s41598-017-07442-y
[77]
Zohoorian-Abootorabi, T., Meratan, A.A., Jafarkhani, S., Muronetz, V., Haertlé, T. and Saboury, A.A. (2023) Modulation of Cytotoxic Amyloid Fibrillation and Mitochondrial Damage of Α-Synuclein by Catechols Mediated Conformational Changes. Scientific Reports, 13, Article No. 5275. https://doi.org/10.1038/s41598-023-32075-9
[78]
Sutachan, J.J., Casas, Z., Albarracin, S.L., Stab, B.R., Samudio, I., Gonzalez, J., et al. (2012) Cellular and Molecular Mechanisms of Antioxidants in Parkinson’s Disease. Nutritional Neuroscience, 15, 120-126. https://doi.org/10.1179/1476830511y.0000000033
[79]
Zhou, B., Wen, M., Lin, X., Chen, Y., Gou, Y., Li, Y., et al. (2017) Alpha Lipoamide Ameliorates Motor Deficits and Mitochondrial Dynamics in the Parkinson’s Disease Model Induced by 6-Hydroxydopamine. Neurotoxicity Research, 33, 759-767. https://doi.org/10.1007/s12640-017-9819-5
[80]
Wang, P., Niu, L., Gao, L., Li, W., Jia, D., Wang, X., et al. (2010) Neuroprotective Effect of Gypenosides against Oxidative Injury in the Substantia Nigra of a Mouse Model of Parkinson’s Disease. Journal of International Medical Research, 38, 1084-1092. https://doi.org/10.1177/147323001003800336
[81]
Angeles, D.C., Ho, P., Dymock, B.W., Lim, K., Zhou, Z. and Tan, E. (2016) Antioxidants Inhibit Neuronal Toxicity in Parkinson’s Disease-Linked lrrk2. Annals of Clinical and Translational Neurology, 3, 288-294. https://doi.org/10.1002/acn3.282
[82]
Jahromi, G.P., Khodadadi, H., Fasihi-Ramandi, M., Esmaeili, M. and Shahriary, A. (2019) Neuroprotective and Antiapoptotic Effects of N-Acetylcystein and Crocus Sativus Aqueous Extract on Arsenic-Induced Neurotoxicity in SH-SY5Y Human Dopaminergic Neuroblastoma Cells. Indian Journal of Pharmaceutical Education and Research, 53, 695-702. https://doi.org/10.5530/ijper.53.4.133
[83]
Mbiydzenyuy, N.E., Ninsiima, H.I., Valladares, M.B. and Pieme, C.A. (2018) Zinc and Linoleic Acid Pre-Treatment Attenuates Biochemical and Histological Changes in the Midbrain of Rats with Rotenone-Induced Parkinsonism. BMC Neuroscience, 19, Article No. 29. https://doi.org/10.1186/s12868-018-0429-9
[84]
Li, Q., Li, S., Fang, J., Yang, C., Zhao, X., Wang, Q., et al. (2023) Artemisinin Confers Neuroprotection against 6-Ohda-Induced Neuronal Injury in Vitro and in Vivo through Activation of the ERK1/2 Pathway. Molecules, 28, Article 5527. https://doi.org/10.3390/molecules28145527
[85]
Rekha, K.R. and Inmozhi Sivakamasundari, R. (2018) Geraniol Protects against the Protein and Oxidative Stress Induced by Rotenone in an in Vitro Model of Parkinson’s Disease. Neurochemical Research, 43, 1947-1962. https://doi.org/10.1007/s11064-018-2617-5
[86]
Han, X., Han, B., Zhao, Y., Li, G., Wang, T., He, J., et al. (2022) Rosmarinic Acid Attenuates Rotenone-Induced Neurotoxicity in SH-SY5Y Parkinson’s Disease Cell Model through Abl Inhibition. Nutrients, 14, Article 3508. https://doi.org/10.3390/nu14173508
[87]
Xu, C., Wu, Y., Tang, L., Liang, Y. and Zhao, Y. (2022) Protective Effect of Cistanoside a on Dopaminergic Neurons in Parkinson’s Disease via Mitophagy. Biotechnology and Applied Biochemistry, 70, 268-280. https://doi.org/10.1002/bab.2350
[88]
Geng, J., Liu, W., Gao, J., Jiang, C., Fan, T., Sun, Y., et al. (2019) Andrographolide Alleviates Parkinsonism in MPTP-PD Mice via Targeting Mitochondrial Fission Mediated by Dynamin-Related Protein 1. British Journal of Pharmacology, 176, 4574-4591. https://doi.org/10.1111/bph.14823
[89]
Mazzio, E.A., Close, F. and Soliman, K.F.A. (2011) The Biochemical and Cellular Basis for Nutraceutical Strategies to Attenuate Neurodegeneration in Parkinson’s Disease. International Journal of Molecular Sciences, 12, 506-569. https://doi.org/10.3390/ijms12010506
[90]
Bhusal, C.K., Uti, D.E., Mukherjee, D., Alqahtani, T., Alqahtani, S., Bhattacharya, A., et al. (2023) Unveiling Nature’s Potential: Promising Natural Compounds in Parkinson’s Disease Management. Parkinsonism & Related Disorders, 115, Article 105799. https://doi.org/10.1016/j.parkreldis.2023.105799
[91]
Hassanzadeh, K. and Rahimmi, A. (2018) Oxidative Stress and Neuroinflammation in the Story of Parkinson’s Disease: Could Targeting These Pathways Write a Good Ending? JournalofCellularPhysiology, 234, 23-32. https://doi.org/10.1002/jcp.26865
[92]
Murtaza, M., Shan, J., Matigian, N., Todorovic, M., Cook, A.L., Ravishankar, S., et al. (2016) Rotenone Susceptibility Phenotype in Olfactory Derived Patient Cells as a Model of Idiopathic Parkinson’s Disease. PLOS ONE, 11, e0154544. https://doi.org/10.1371/journal.pone.0154544
[93]
Wei, Z., Li, X., Li, X., Liu, Q. and Cheng, Y. (2018) Oxidative Stress in Parkinson’s Disease: A Systematic Review and Meta-Analysis. Frontiers in Molecular Neuroscience, 11, Article 236. https://doi.org/10.3389/fnmol.2018.00236
[94]
Mittal, P., Dhankhar, S., Chauhan, S., Garg, N., Bhattacharya, T., Ali, M., et al. (2023) A Review on Natural Antioxidants for Their Role in the Treatment of Parkinson’s Disease. Pharmaceuticals, 16, Article 908. https://doi.org/10.3390/ph16070908