This study explores the catalytic hydrothermal liquefaction of a wide range of biomass feedstock using iron-based catalysts. The utilization of biofuels presents an optimistic answer to the persistent challenges of climate change and the dwindling of finite fuel sources. By deriving these biofuels from renewable biomass sources, we can decrease our dependency on limited resources and strive toward a more sustainable future. In addition to powering our homes and vehicles, biofuels hold great potential as an indispensable raw material for the creation of valuable chemicals. By continuously exploring innovative methods to harness the power of biofuels, we can facilitate the path to a world that is cleaner, greener, and more prosperous for future generations. Using iron-based catalysts in the HTL process provides opportunities to increase biofuel yield, improve its quality, and make it more environmentally sustainable. By reviewing recent literature, this study provides valuable insights into the catalytic mechanisms, process optimization strategies, and product characteristics associated with biofuel production via HTL with iron-based catalysts. The key findings highlight the role of iron-based catalysts in promoting important chemical transformations, such as depolymerization, deoxygenation, and hydrogenation, which lead to improved biofuel properties. Additionally, the review discusses how various biomass feedstocks and catalyst formulations affect biofuel yield and quality.
References
[1]
Gollakota, A.R.K., Reddy, M., Subramanyam, M.D. and Kishore, N. (2016) A Review on the Upgradation Techniques of Pyrolysis Oil. RenewableandSustainableEnergyReviews, 58, 1543-1568. https://doi.org/10.1016/j.rser.2015.12.180
[2]
Sorrell, S., Speirs, J., Bentley, R., Brandt, A. and Miller, R. (2010) Global Oil Depletion: A Review of the Evidence. EnergyPolicy, 38, 5290-5295. https://doi.org/10.1016/j.enpol.2010.04.046
[3]
Scarsella, M., de Caprariis, B., Damizia, M. and De Filippis, P. (2020) Heterogeneous Catalysts for Hydrothermal Liquefaction of Lignocellulosic Biomass: A Review. BiomassandBioenergy, 140, Article ID: 105662. https://doi.org/10.1016/j.biombioe.2020.105662
[4]
Wheeler, T. and von Braun, J. (2013) Climate Change Impacts on Global Food Security. Science, 341, 508-513. https://doi.org/10.1126/science.1239402
[5]
Halilu, A., Ali, T.H., Atta, A.Y., Sudarsanam, P., Bhargava, S.K. and Abd Hamid, S.B. (2016) Highly Selective Hydrogenation of Biomass-Derived Furfural into Furfuryl Alcohol Using a Novel Magnetic Nanoparticles Catalyst. Energy&Fuels, 30, 2216-2226. https://doi.org/10.1021/acs.energyfuels.5b02826
[6]
Mohan, D., Pittman, C.U. and Steele, P.H. (2006) Pyrolysis of Wood/Biomass for Bio-Oil: A Critical Review. Energy&Fuels, 20, 848-889. https://doi.org/10.1021/ef0502397
[7]
Gollakota, A.R.K., Kishore, N. and Gu, S. (2018) A Review on Hydrothermal Liquefaction of Biomass. RenewableandSustainableEnergyReviews, 81, 1378-1392. https://doi.org/10.1016/j.rser.2017.05.178
[8]
Sikarwar, V.S., Zhao, M., Fennell, P.S., Shah, N. and Anthony, E.J. (2017) Progress in Biofuel Production from Gasification. ProgressinEnergyandCombustionScience, 61, 189-248. https://doi.org/10.1016/j.pecs.2017.04.001
[9]
Nanda, S., Rana, R., Sarangi, P.K. and Dalai, A.K. (2018) A Broad Introduction to First-, Second-, and Third-Generation Biofuels. In: Sarangi, P.K., Nanda, S. and Mohanty, P., Eds., Recent Advancements in Biofuels and Bioenergy Utilization, Springer, 1-25.
[10]
Kandasamy, S., Zhang, B., He, Z., Chen, H., Feng, H., Wang, Q., et al. (2019) Hydrothermal Liquefaction of Microalgae Using Fe3O4 Nanostructures as Efficient Catalyst for the Production of Bio-Oil: Optimization of Reaction Parameters by Response Surface Methodology. BiomassandBioenergy, 131, Article ID: 105417. https://doi.org/10.1016/j.biombioe.2019.105417
[11]
Tekin, K., Karagöz, S. and Bektaş, S. (2014) A Review of Hydrothermal Biomass Processing. RenewableandSustainableEnergyReviews, 40, 673-687. https://doi.org/10.1016/j.rser.2014.07.216
[12]
Nagappan, S., Bhosale, R.R., Nguyen, D.D., Chi, N.T.L., Ponnusamy, V.K., Woong, C.S., et al. (2021) Catalytic Hydrothermal Liquefaction of Biomass into Bio-Oils and Other Value-Added Products—A Review. Fuel, 285, Article ID: 119053. https://doi.org/10.1016/j.fuel.2020.119053
[13]
Tian, C., Li, B., Liu, Z., Zhang, Y. and Lu, H. (2014) Hydrothermal Liquefaction for Algal Biorefinery: A Critical Review. RenewableandSustainableEnergyReviews, 38, 933-950. https://doi.org/10.1016/j.rser.2014.07.030
[14]
Xu, D., Guo, S., Liu, L., Hua, H., Guo, Y., Wang, S., et al. (2018) Ni-Ru/CeO2 Catalytic Hydrothermal Upgrading of Water-Insoluble Biocrude from Algae Hydrothermal Liquefaction. BioMedResearchInternational, 2018, Article ID: 8376127. https://doi.org/10.1155/2018/8376127
[15]
Zaborniak, I., Błoniarz, P., et al. (2020) Iron-Based Catalytically Active Complexes in Preparation of Functional Materials. Processes, 8, Article No. 1683.
[16]
Zhao, B., Li, H., Wang, H., Hu, Y., Gao, J., Zhao, G., et al. (2021) Synergistic Effects of Metallic Fe and Other Homogeneous/Heterogeneous Catalysts in Hydrothermal Liquefaction of Woody Biomass. RenewableEnergy, 176, 543-554. https://doi.org/10.1016/j.renene.2021.05.115
[17]
Yadav, P. and Reddy, S.N. (2020) Hydrothermal Liquefaction of Fe-Impregnated Water Hyacinth for Generation of Liquid Bio-Fuels and Nano Fe Carbon Hybrids. BioresourceTechnology, 313, Article ID: 123691. https://doi.org/10.1016/j.biortech.2020.123691
[18]
Brunner, G. (2009) Near Critical and Supercritical Water. Part I. Hydrolytic and Hydrothermal Processes. TheJournalofSupercriticalFluids, 47, 373-381. https://doi.org/10.1016/j.supflu.2008.09.002
[19]
Toor, S.S., Rosendahl, L. and Rudolf, A. (2011) Hydrothermal Liquefaction of Biomass: A Review of Subcritical Water Technologies. Energy, 36, 2328-2342. https://doi.org/10.1016/j.energy.2011.03.013
[20]
de Caprariis, B., Bavasso, I., Bracciale, M.P., Damizia, M., De Filippis, P. and Scarsella, M. (2019) Enhanced Bio-Crude Yield and Quality by Reductive Hydrothermal Liquefaction of Oak Wood Biomass: Effect of Iron Addition. JournalofAnalyticalandAppliedPyrolysis, 139, 123-130. https://doi.org/10.1016/j.jaap.2019.01.017
[21]
Nazari, L., Yuan, Z., Souzanchi, S., Ray, M.B. and Xu, C.C. (2015) Hydrothermal Liquefaction of Woody Biomass in Hot-Compressed Water: Catalyst Screening and Comprehensive Characterization of Bio-Crude Oils. Fuel, 162, 74-83. https://doi.org/10.1016/j.fuel.2015.08.055
[22]
Aturagaba, G., Egesa, D., Mubiru, E. and Tebandeke, E. (2023) Catalytic Hydrothermal Liquefaction of Water Hyacinth Using Fe3O4/NiO Nanocomposite: Optimization of Reaction Conditions by Response Surface Methodology. JournalofSustainableBioenergySystems, 13, 73-98. https://doi.org/10.4236/jsbs.2023.133005
[23]
Egesa, D., Chuck, C.J. and Plucinski, P. (2017) Multifunctional Role of Magnetic Nanoparticles in Efficient Microalgae Separation and Catalytic Hydrothermal Liquefaction. ACSSustainableChemistry&Engineering, 6, 991-999. https://doi.org/10.1021/acssuschemeng.7b03328
[24]
Miyata, Y., Yamazaki, Y., Hirano, Y. and Kita, Y. (2018) Quantitative Analysis of the Aqueous Fraction from the Fe-Assisted Hydrothermal Liquefaction of Oil Palm Empty Fruit Bunches. JournalofAnalyticalandAppliedPyrolysis, 132, 72-81. https://doi.org/10.1016/j.jaap.2018.03.013
[25]
Sharma, K., Kohansal, K., Azuara, A.J., Rosendahl, L.A., Benedetti, V., Yu, D., et al. (2023) Green and Facile Recycling of Bauxite Residue to Biochar-Supported Iron-Based Composite Material for Hydrothermal Liquefaction of Municipal Solid Waste. WasteManagement, 171, 259-270. https://doi.org/10.1016/j.wasman.2023.08.024
[26]
Egesa, D., Mulindwa, P., Mubiru, E., Kyomuhimbo, H.D. and Aturagaba, G. (2021) Hydrothermal Liquefaction of Water Hyacinth: Effect of Process Conditions and Magnetite Nanoparticles on Biocrude Yield and Composition. JournalofSustainableBioenergySystems, 11, 157-186. https://doi.org/10.4236/jsbs.2021.114012
[27]
Zhao, B., Hu, Y., Qi, L., Gao, J., Zhao, G., Ray, M.B., et al. (2021) Promotion Effects of Metallic Iron on Hydrothermal Liquefaction of Cornstalk in Ethanol-Water Mixed Solvents for the Production of Biocrude Oil. Fuel, 285, Article ID: 119150. https://doi.org/10.1016/j.fuel.2020.119150
[28]
Cao, M., Long, C., Sun, S., Zhao, Y., Luo, J. and Wu, D. (2021) Catalytic Hydrothermal Liquefaction of Peanut Shell for the Production Aromatic Rich Monomer Compounds. JournaloftheEnergyInstitute, 96, 90-96. https://doi.org/10.1016/j.joei.2021.02.007
[29]
Miyata, Y., Sagata, K., Hirose, M., Yamazaki, Y., Nishimura, A., Okuda, N., et al. (2017) Fe-Assisted Hydrothermal Liquefaction of Lignocellulosic Biomass for Producing High-Grade Bio-Oil. ACS Sustainable Chemistry & Engineering, 5, 3562-3569. https://doi.org/10.1021/acssuschemeng.7b00381
[30]
Akhtar, J. and Amin, N.A.S. (2011) A Review on Process Conditions for Optimum Bio-Oil Yield in Hydrothermal Liquefaction of Biomass. RenewableandSustainableEnergyReviews, 15, 1615-1624. https://doi.org/10.1016/j.rser.2010.11.054
[31]
de Caprariis, B., Scarsella, M., Bavasso, I., Bracciale, M.P., Tai, L. and De Filippis, P. (2021) Effect of Ni, Zn and Fe on Hydrothermal Liquefaction of Cellulose: Impact on Bio-Crude Yield and Composition. JournalofAnalyticalandAppliedPyrolysis, 157, Article ID: 105225. https://doi.org/10.1016/j.jaap.2021.105225
[32]
Nguyen, S.T., Le, T.M. and Nguyen, H.V. (2021) Iron-Catalyzed Fast Hydrothermal Liquefaction of Cladophora Socialis Macroalgae into High Quality Fuel Precursor. BioresourceTechnology, 337, Article ID: 125445. https://doi.org/10.1016/j.biortech.2021.125445
[33]
Tai, L., de Caprariis, B., Scarsella, M., De Filippis, P. and Marra, F. (2021) Improved Quality Bio-Crude from Hydrothermal Liquefaction of Oak Wood Assisted by Zero-Valent Metals. Energy&Fuels, 35, 10023-10034. https://doi.org/10.1021/acs.energyfuels.1c00889
[34]
Mukundan, S., Xuan, J., Dann, S.E. and Wagner, J.L. (2023) Highly Active and Magnetically Recoverable Heterogeneous Catalyst for Hydrothermal Liquefaction of Biomass into High Quality Bio-Oil. BioresourceTechnology, 369, Article ID: 128479. https://doi.org/10.1016/j.biortech.2022.128479
[35]
Bian, J., Zhang, Q., Zhang, P., Feng, L. and Li, C. (2017) Supported Fe2O3 Nanoparticles for Catalytic Upgrading of Microalgae Hydrothermal Liquefaction Derived Bio-oil. CatalysisToday, 293, 159-166. https://doi.org/10.1016/j.cattod.2017.02.008
[36]
Chen, Y., Duan, P., Dong, L., Zhu, C., Jin, L. and Tian, F. (2021) The Study of Hydrothermal Liquefaction of Corn Straw with Nano Ferrite+ Inorganic Base Catalyst System at Low Temperature. BioresourceTechnology, 333, Article ID: 125185. https://doi.org/10.1016/j.biortech.2021.125185
[37]
Xu, C. and Etcheverry, T. (2008) Hydro-Liquefaction of Woody Biomass in Sub-and Super-Critical Ethanol with Iron-Based Catalysts. Fuel, 87, 335-345. https://doi.org/10.1016/j.fuel.2007.05.013
[38]
Aysu, T. (2014) Catalytic Effects of Ferric Chloride and Sodium Hydroxide on Supercritical Liquefaction of Thistle (Cirsium yildizianum). TheJournalofSupercriticalFluids, 95, 298-317. https://doi.org/10.1016/j.supflu.2014.09.024
[39]
Demirbaş, A. (2001) Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals. EnergyConversionandManagement, 42, 1357-1378. https://doi.org/10.1016/s0196-8904(00)00137-0
[40]
Liu, Z., Li, H., Zeng, J., Liu, M., Zhang, Y. and Liu, Z. (2018) Influence of Fe/HZSM-5 Catalyst on Elemental Distribution and Product Properties during Hydrothermal Liquefaction of Nannochloropsis sp. AlgalResearch, 35, 1-9. https://doi.org/10.1016/j.algal.2018.08.011
[41]
Li, Y., Zhu, C., Jiang, J., Yang, Z., Feng, W., Li, L., et al. (2021) Catalytic Hydrothermal Liquefaction of Gracilaria Corticata Macroalgae: Effects of Process Parameter on Bio-Oil Up-Gradation. BioresourceTechnology, 319, Article ID: 124163. https://doi.org/10.1016/j.biortech.2020.124163
[42]
Raikova, S., Le, C.D., Beacham, T.A., Jenkins, R.W., Allen, M.J. and Chuck, C.J. (2017) Towards a Marine Biorefinery through the Hydrothermal Liquefaction of Macroalgae Native to the United Kingdom. BiomassandBioenergy, 107, 244-253. https://doi.org/10.1016/j.biombioe.2017.10.010