This study investigates upscaling of bio-diesel industry crude glycerol to 1,3-propanediol at a 10 L scale, using C. butyricum L4. This strain showed higher potential for glycerol valorization having various toxins, affecting overall fermentation process. A COD mass balance of the 10 L fermentation with crude glycerol as a sole carbon source, showed a close balance of 90.02%, with 1,3-propanediol as the main metabolite (68.3% of total COD distribution). Three different aqueous two-phase extractions (SOE) were evaluated for 1,3-propanediol recovery. When (NH4)2SO4 and ethanol were used, the best outcomes were achieved (87.6% recovery, 19.6% by-products removal). The purification process is multi-step involving biomass removal, activated charcoal treatment, vacuum distillation, and isocratic chromatography. Vacuum distillation aids crude broth concentration with simultaneous removal of low distillates. Through isocratic chromatography in the final purification stage, approximately 82.22% yield and a purity exceeding 97% for 1,3-propanediol were achieved. The objective of this study is to advance environmental sustainability within the production process.
References
[1]
Marr, A.C. (2024) 1,3‐Propanediol, an Exemplary Bio‐Renewable Organic Platform Chemical. AdvancedSynthesis&Catalysis, 366, 4835-4845. https://doi.org/10.1002/adsc.202401066
[2]
Da Silva, A.B., de Menezes, C.A., Lovato, G., Rodrigues, J.A.D. and Silva, E.L. (2021) Enhanced Fermentative Production of 1,3 Propanediol by Employing Ethanol Industry Wastewater. BioresourceTechnologyReports, 16, Article 100865. https://doi.org/10.1016/j.biteb.2021.100865
[3]
Veras, S.T.S., Rojas, P., Florencio, L., Kato, M.T. and Sanz, J.L. (2019) Production of 1,3-Propanediol from Pure and Crude Glycerol Using a UASB Reactor with Attached Biomass in Silicone Support. BioresourceTechnology, 279, 140-148. https://doi.org/10.1016/j.biortech.2019.01.125
[4]
Janković, T., Straathof, A.J.J. and Kiss, A.A. (2024) Eco-Efficient Downstream Processing of 1,3-Propanediol Applicable to Various Fermentation Processes. ProcessBiochemistry, 143, 210-224. https://doi.org/10.1016/j.procbio.2024.04.040
[5]
Asopa, R.P., Ikram, M.M. and Saharan, V.K. (2022) Valorization of Glycerol into 1,3-Propanediol and Organic Acids Using Biocatalyst Saccharomyces Cerevisiae. BioresourceTechnologyReports, 18, Article 101084. https://doi.org/10.1016/j.biteb.2022.101084
[6]
Alawi, A., Kiyoshi, K., Matsumoto, M., Yamaguchi, T., Narita, T., Morita, T., et al. (2022) Metabolic Engineering of a Newly Isolated Citrobacterbraakii Strain to Produce 1,3-Propanediol from Glycerol. Bioresource Technology Reports, 20, Article 101271. https://doi.org/10.1016/j.biteb.2022.101271
[7]
Schoch, T., Baur, T., Kunz, J., Stöferle, S. and Dürre, P. (2023) Heterologous 1,3-Propanediol Production Using Different Recombinant Clostridium Beijerinckii DSM 6423 Strains. Microorganisms, 11, Article 784. https://doi.org/10.3390/microorganisms11030784
[8]
Zhang, C., Sharma, S., Wang, W. and Zeng, A. (2021) A Novel Downstream Process for Highly Pure 1,3‐Propanediol from an Efficient Fed‐Batch Fermentation of Raw Glycerol by clostridiumPasteurianum. EngineeringinLifeSciences, 21, 351-363. https://doi.org/10.1002/elsc.202100012
[9]
Anand, P., Saxena, R.K. and Marwah, R.G. (2011) A Novel Downstream Process for 1,3-Propanediol from Glycerol-Based Fermentation. AppliedMicrobiologyandBiotechnology, 90, 1267-1276. https://doi.org/10.1007/s00253-011-3161-2
[10]
Cho, M., Joen, S.I., Pyo, S., Mun, S. and Kim, J. (2006) A Novel Separation and Purification Process for 1,3-Propanediol. ProcessBiochemistry, 41, 739-744. https://doi.org/10.1016/j.procbio.2005.11.013
[11]
Wang, X., Zhou, J., Sun, Y. and Xiu, Z. (2019) Bioconversion of Raw Glycerol from Waste Cooking-Oil-Based Biodiesel Production to 1,3-Propanediol and Lactate by a Microbial Consortium. FrontiersinBioengineeringandBiotechnology, 7, Article 14. https://doi.org/10.3389/fbioe.2019.00014
[12]
Song, Z., Sun, Y., Wei, B. and Xiu, Z. (2013) Two‐Step Salting‐Out Extraction of 1,3‐Propanediol and Lactic Acid from the Fermentation Broth of Klebsiella pneumoniae on Biodiesel‐Derived Crude Glycerol. EngineeringinLifeSciences, 13, 487-495. https://doi.org/10.1002/elsc.201200154
[13]
Sun, Y., Shen, J., Yan, L., Zhou, J., Jiang, L., Chen, Y., etal. (2018) Advances in Bioconversion of Glycerol to 1,3-Propanediol: Prospects and Challenges. ProcessBiochemistry, 71, 134-146. https://doi.org/10.1016/j.procbio.2018.05.009
[14]
de Sousa e Silva, A., Sales Morais, N.W., Maciel Holanda Coelho, M., Lopes Pereira, E. and Bezerra dos Santos, A. (2020) Potentialities of Biotechnological Recovery of Methane, Hydrogen and Carboxylic Acids from Agro-Industrial Wastewaters. BioresourceTechnologyReports, 10, Article 100406. https://doi.org/10.1016/j.biteb.2020.100406
[15]
Gupta, P., Kumar, M., Gupta, R.P., Puri, S.K. and Ramakumar, S.S.V. (2022) Fermentative Reforming of Crude Glycerol to 1,3-Propanediol Using Clostridium butyricum Strain L4. Chemosphere, 292, Article 133426. https://doi.org/10.1016/j.chemosphere.2021.133426
[16]
Sittijunda, S. and Reungsang, A. (2020) Valorization of Crude Glycerol into Hydrogen, 1,3-Propanediol, and Ethanol in an Up-Flow Anaerobic Sludge Blanket (UASB) Reactor under Thermophilic Conditions. RenewableEnergy, 161, 361-372. https://doi.org/10.1016/j.renene.2020.07.053
[17]
Kongjan, P., Jariyaboon, R., Reungsang, A. and Sittijunda, S. (2021) Co-Fermentation of 1,3-Propanediol and 2,3-Butanediol from Crude Glycerol Derived from the Biodiesel Production Process by Newly Isolated Enterobacter Sp.: Optimization Factors Affecting. BioresourceTechnologyReports, 13, Article 100616. https://doi.org/10.1016/j.biteb.2020.100616
[18]
Yeow, T.A., Said Ismail, A.A., Elly Agustin, Y., Ho, S.S., Yeap, S.K., Hui, Y.W., etal. (2024) Review on the Downstream Purification of the Biologically Produced 1,3-propanediol. AppliedMicrobiology:Theory&Technology, 5, 72-92. https://doi.org/10.37256/amtt.5120244440
[19]
Dobrovszky, K. and Ronkay, F. (2014) Alternative Polymer Separation Technology by Centrifugal Force in a Melted State. WasteManagement, 34, 2104-2112. https://doi.org/10.1016/j.wasman.2014.05.006
[20]
Zhu, J., Wakisaka, M., Omura, T., Yang, Z., Yin, Y. and Fang, W. (2024) Advances in Industrial Harvesting Techniques for Edible Microalgae: Recent Insights into Sustainable, Efficient Methods and Future Directions. JournalofCleanerProduction, 436, Article 140626. https://doi.org/10.1016/j.jclepro.2024.140626
[21]
Ghaedi, M., Nasab, A.G., Khodadoust, S., Rajabi, M. and Azizian, S. (2014) Application of Activated Carbon as Adsorbents for Efficient Removal of Methylene Blue: Kinetics and Equilibrium Study. JournalofIndustrialandEngineeringChemistry, 20, 2317-2324. https://doi.org/10.1016/j.jiec.2013.10.007
[22]
Gupta, P., Sreekrishnan, T.R. and Ahammad, S.Z. (2015) Acclimatization of Anaerobic Sludge to Treat Cr (VI) and 4-CP Present in Industrial Effluents and Their Effect on Microbial Communities. JournalofHazardous, Toxic, andRadioactiveWaste, 19, Article 4015007. https://doi.org/10.1061/(asce)hz.2153-5515.0000279
[23]
Drews, A. (2008) Standard Test Method for Color of Clear Liquids (Platinum-Cobalt Scale). In: Drews, A.W., Ed., ManualonHydrocarbonAnalysis, 6th Edition, ASTM International.
[24]
Moscoviz, R., Trably, E. and Bernet, N. (2016) Consistent 1,3-Propanediol Production from Glycerol in Mixed Culture Fermentation over a Wide Range of pH. BiotechnologyforBiofuels, 9, Article No. 32. https://doi.org/10.1186/s13068-016-0447-8
[25]
Sheldon, R.A. (2017) Metrics of Green Chemistry and Sustainability: Past, Present, and Future. ACSSustainableChemistry&Engineering, 6, 32-48. https://doi.org/10.1021/acssuschemeng.7b03505
[26]
D’Angelo, S.C., Dall’Ara, A., Mondelli, C., Pérez-Ramírez, J. and Papadokonstantakis, S. (2018) Techno-Economic Analysis of a Glycerol Biorefinery. ACSSustainableChemistry&Engineering, 6, 16563-16572. https://doi.org/10.1021/acssuschemeng.8b03770
[27]
Hermann, B.G. and Patel, M. (2007) Today’s and Tomorrow’s Bio-Based Bulk Chemicals from White Biotechnology: A Techno-Economic Analysis. AppliedBiochemistryandBiotechnology, 136, 361-388. https://doi.org/10.1007/s12010-007-9031-9
[28]
van Heerden, C., Farzad, S. and Görgens, J.F. (2023) Techno-Economic and Environmental Assessments of 1,3-Propanediol and Xylooligosaccharide Production Annexed to a Typical Sugar Mill. ACSSustainableChemistry&Engineering, 11, 16453-16468. https://doi.org/10.1021/acssuschemeng.3c03338
[29]
Petrides, D. and Ferrerira, R. (2020) Production of 1,3-Propanediol (PDO) via Fer-mentation—Process Modeling and Techno-Economic Assessment (TEA) Using Su-perPro Designer. Intelligen, Inc.
[30]
Li, Z., Yan, L., Zhou, J., Wang, X., Sun, Y. and Xiu, Z. (2019) Two-Step Salting-Out Extraction of 1,3-Propanediol, Butyric Acid and Acetic Acid from Fermentation Broths. SeparationandPurificationTechnology, 209, 246-253. https://doi.org/10.1016/j.seppur.2018.07.021
[31]
Wu, H.S. and Wang, Y.J. (2012) Salting-Out Effect on Recovery of 1,3-Propanediol from Fermentation Broth. Industrial&EngineeringChemistryResearch, 51, 10930-10935. https://doi.org/10.1021/ie300404t
[32]
Saxena, R.K., Anand, P., Saran, S. and Isar, J. (2009) Microbial Production of 1,3-Propanediol: Recent Developments and Emerging Opportunities. BiotechnologyAdvances, 27, 895-913. https://doi.org/10.1016/j.biotechadv.2009.07.003
[33]
Li, Z., Sun, Y., Zheng, W., Teng, H. and Xiu, Z. (2013) A Novel and Environment-Friendly Bioprocess of 1,3-Propanediol Fermentation Integrated with Aqueous Two-Phase Extraction by Ethanol/Sodium Carbonate System. BiochemicalEngineeringJournal, 80, 68-75. https://doi.org/10.1016/j.bej.2013.09.014
[34]
Wischral, D., Fu, H., Pellegrini Pessoa, F.L., Pereira, N. and Yang, S. (2018) Effective and Simple Recovery of 1,3-Propanediol from a Fermented Medium by Liquid-Liquid Extraction System with Ethanol and K 3 PO 4. ChineseJournalofChemicalEngineering, 26, 104-108. https://doi.org/10.1016/j.cjche.2017.06.005
[35]
Fu, C., Li, Z., Sun, Z. and Xie, S. (2020) A Review of Salting-Out Effect and Sugaring-Out Effect: Driving Forces for Novel Liquid-Liquid Extraction of Biofuels and Biochemicals. FrontiersofChemicalScienceandEngineering, 15, 854-871. https://doi.org/10.1007/s11705-020-1980-3
[36]
Matugi, K., Chiavone-Filho, O., de Arruda Ribeiro, M.P., de Pelegrini Soares, R. and de Campos Giordano, R. (2018) Vapor-Liquid Equilibrium Calculation for Simulation of Bioethanol Concentration from Sugarcane. BrazilianJournalofChemicalEngineering, 35, 341-352. https://doi.org/10.1590/0104-6632.20180352s20160278
[37]
Xiu, Z. and Zeng, A. (2008) Present State and Perspective of Downstream Processing of Biologically Produced 1,3-Propanediol and 2,3-Butanediol. Applied Microbiology and Biotechnology, 78, 917-926. https://doi.org/10.1007/s00253-008-1387-4
[38]
Kaeding, T., DaLuz, J., Kube, J. and Zeng, A. (2014) Integrated Study of Fermentation and Downstream Processing in a Miniplant Significantly Improved the Microbial 1,3-Propanediol Production from Raw Glycerol. Bioprocess and Biosystems Engineering, 38, 575-586. https://doi.org/10.1007/s00449-014-1297-z
[39]
Wang, Z., Wu, Z. and Tan, T. (2013) Studies on Purification of 1,3-Propanediol by Molecular Distillation. Biotechnology and Bioprocess Engineering, 18, 697-702. https://doi.org/10.1007/s12257-012-0804-9
[40]
Gong, Y., Tang, Y., Wang, X., Yu, L. and Liu, D. (2004) The Possibility of the Desalination of Actual 1,3-Propanediol Fermentation Broth by Electrodialysis. Desalination, 161, 169-178. https://doi.org/10.1016/s0011-9164(04)90052-5
[41]
Mitrea, L., Leopold, L.F., Bouari, C. and Vodnar, D.C. (2020) Separation and Purification of Biogenic 1,3-Propanediol from Fermented Glycerol through Flocculation and Strong Acidic Ion-Exchange Resin. Biomolecules, 10, Article 1601. https://doi.org/10.3390/biom10121601
[42]
Sui, W., Sun, Y., Wang, X. and Xiu, Z. (2022) Synergistic Extraction of 1,3-Propanediol from Fermentation Broths Using Multialcohol Extractants. ACSSustainableChemistry&Engineering, 10, 11891-11901. https://doi.org/10.1021/acssuschemeng.2c02853
[43]
Patent Application Publication (2021) US 2021/0071208 A1.
[44]
Vivek, N., Pandey, A. and Binod, P. (2018) An Efficient Aqueous Two Phase Systems Using Dual Inorganic Electrolytes to Separate 1,3-Propanediol from the Fermented Broth. BioresourceTechnology, 254, 239-246. https://doi.org/10.1016/j.biortech.2018.01.076
[45]
Ahmad, A., Othman, I., Taher, H. and Banat, F. (2021) Lactic Acid Recovery from Date Pulp Waste Fermentation Broth by Ions Exchange Resins. EnvironmentalTechnology&Innovation, 22, Article 101438. https://doi.org/10.1016/j.eti.2021.101438
[46]
Wołowicz, A. and Wawrzkiewicz, M. (2021) Screening of Ion Exchange Resins for Hazardous Ni(II) Removal from Aqueous Solutions: Kinetic and Equilibrium Batch Adsorption Method. Processes, 9, Article 285. https://doi.org/10.3390/pr9020285