全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

卟啉基金属有机框架材料及其在传感检测的研究进展与展望
Research Progress and Prospect of Porphyrin-Based Organic Framework Materials and Their Applications in Sensing Detection

DOI: 10.12677/japc.2025.142020, PP. 210-219

Keywords: 卟啉基金属有机框架(PMOFs),传感检测
Porphyrin-Based Metal-Organic Frameworks (PMOFs)
, Sensing Detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

卟啉基金属有机框架材料(PMOFs)相比于传统传感材料(如酶、抗体)具有更高的比表面积、优异的光电活性、可调孔径及良好的生物相容性,在传感检测领域展现出了独特优势。本文系统综述了PMOFs的关于金属中心调控、卟啉功能化修饰、混合配体设计策略以及后合成修饰、复合功能化等功能化方法。探讨了PMOFs目前在荧光、比色、电化学及光电化学等传感检测中的应用进展。概括描述了PMOFs在未来发展的方向。譬如其目前在稳定性、规模化制备等方面仍面临挑战,在未来发展方向应往多模态传感融合、智能响应材料开发及结合人工智能技术来发展。为PMOFs的实际传感检测应用提供了理论支持和技术参考。
Porphyrin-based organic framework materials (PMOFs) have higher specific surface area, excellent photoelectric activity, adjustable pore size and good biocompatibility compared with traditional sensing materials (such as enzymes and antibodies), which have shown unique advantages in the field of sensing and detection. In this paper, the functionalization methods of PMOFs, such as metal center regulation, porphyrin functionalization, hybrid ligand design strategies, post-synthetic modification, and complex functionalization, are systematically reviewed. The current application progress of PMOFs in fluorescence, colorimetric, electrochemical and photoelectrochemical sensing detection is discussed. The direction of PMOFs development in the future is summarized. For example, it still faces challenges in stability and large-scale preparation. In the future, the development direction should be developed towards multimodal sensor fusion, intelligent response material development, and combination with artificial intelligence technology. This study provides theoretical support and technical reference for the practical sensing application of PMOFs.

References

[1]  Wang, M., Liu, H. and Fan, K. (2023) Signal Amplification Strategy Design in Nanozyme‐Based Biosensors for Highly Sensitive Detection of Trace Biomarkers. Small Methods, 7, Article ID: 2301049.
https://doi.org/10.1002/smtd.202301049
[2]  Cheng, Z., Luo, X., Yu, S., Min, D., Zhang, S., Li, X., et al. (2025) Tunable Control of Cas12 Activity Promotes Universal and Fast One-Pot Nucleic Acid Detection. Nature Communications, 16, Article No. 1166.
https://doi.org/10.1038/s41467-025-56516-3
[3]  Ma, H., Hu, L., Ding, F., Liu, J., Su, J., Tu, K., et al. (2024) Introducing High-Performance Star-Shaped Bimetallic Nanotags into SERS Aptasensor: An Ultrasensitive and Interference-Free Method for Chlorpyrifos Detection. Biosensors and Bioelectronics, 263, Article 116577.
https://doi.org/10.1016/j.bios.2024.116577
[4]  Xue, B., Yang, Q., Xia, K., Li, Z., Chen, G.Y., Zhang, D., et al. (2023) An AuNPs/Mesoporous NiO/Nickel Foam Nanocomposite as a Miniaturized Electrode for Heavy Metal Detection in Groundwater. Engineering, 27, 199-208.
https://doi.org/10.1016/j.eng.2022.06.005
[5]  He, X. (2023) Fundamental Perspectives on the Electrochemical Water Applications of Metal-Organic Frameworks. Nano-Micro Letters, 15, Article No. 148.
https://doi.org/10.1007/s40820-023-01124-3
[6]  Yuan, Z., Chai, H., Huang, Y., Zhang, Z., Tan, W., Sun, Y., et al. (2025) Porphyrin-Engineered Metal-Organic Frameworks for Photo/Electrochemical Sensing: Preparation and Mechanisms. Coordination Chemistry Reviews, 527, Article 216385.
https://doi.org/10.1016/j.ccr.2024.216385
[7]  Bodedla, G.B., Zhu, X. and Wong, W. (2023) An Overview on Aiegen‐Decorated Porphyrins: Current Status and Applications. Aggregate, 4, e330.
https://doi.org/10.1002/agt2.330
[8]  Montero, J., da Silva Freitas, W., Forchetta, M., Galloni, P., Mecheri, B. and D’Epifanio, A. (2025) Porphyrin-Based Posolytes: A Novel Approach to Advancing Aqueous Organic Redox Flow Battery Technology. Chemical Engineering Journal, 506, Article 159954.
https://doi.org/10.1016/j.cej.2025.159954
[9]  Chen, L., Zhao, X. and Yan, X. (2023) Porphyrinic Metal-Organic Frameworks for Biological Applications. Advanced Sensor and Energy Materials, 2, Article 100045.
https://doi.org/10.1016/j.asems.2022.100045
[10]  Lu, X., Huo, Q., Li, J., Li, B., Yu, X., Sun, X., et al. (2024) Elevating Nonlinear Optical Response through D‐Electron Modulation in Metal-Organic Frameworks. ChemistryA European Journal, 31, e202403564.
https://doi.org/10.1002/chem.202403564
[11]  Jiao, S., Han, X., Bu, X., Huang, Z., Li, S., Wang, W., et al. (2024) D‐Orbital Induced Electronic Structure Reconfiguration toward Manipulating Electron Transfer Pathways of Metallo‐Porphyrin for Enhanced AlCl2+ Storage. Advanced Materials, 36, Article ID: 2409904.
https://doi.org/10.1002/adma.202409904
[12]  Chen, H., Wang, Y., Wang, W., Cao, T., Zhang, L., Wang, Z., et al. (2024) High-Yield Porphyrin Production through Metabolic Engineering and Biocatalysis. Nature Biotechnology.
https://doi.org/10.1038/s41587-024-02267-3
[13]  Howarth, A.J., Peters, A.W., Vermeulen, N.A., Wang, T.C., Hupp, J.T. and Farha, O.K. (2016) Best Practices for the Synthesis, Activation, and Characterization of Metal-Organic Frameworks. Chemistry of Materials, 29, 26-39.
https://doi.org/10.1021/acs.chemmater.6b02626
[14]  Yu, K., Chai, H., Sun, H., Xiang, X., Zhao, H., Tian, M., et al. (2024) A Fluorescence Analysis Model for Assessing the Water Stability of Porphyrinic Metal-Organic Frameworks. Sensors and Actuators B: Chemical, 401, Article 135046.
https://doi.org/10.1016/j.snb.2023.135046
[15]  Zi, L., Liu, L., Zhou, M., Liu, L., Xiao, B., Xu, L., et al. (2024) Synthesis of Pyrrole‐Sharing Fused Porphyrinoid Hybrids by Post‐Fabrication of Ni(II) Porphyrins. Angewandte Chemie International Edition, 63, e202319005.
https://doi.org/10.1002/anie.202319005
[16]  Chen, P., Jiang, P., Lin, Q., Zeng, X., Liu, T., Li, M., et al. (2022) Simultaneous Homogeneous Fluorescence Detection of AFP and GPC3 in Hepatocellular Carcinoma Clinical Samples Assisted by Enzyme-Free Catalytic Hairpin Assembly. ACS Applied Materials & Interfaces, 14, 28697-28705.
https://doi.org/10.1021/acsami.2c09135
[17]  Wu, W., Lv, X., He, T., Si, G., Huang, H., Xie, L., et al. (2024) Boosting Structural Variety and Catalytic Activity of Porphyrinic Metal-Organic Frameworks by Harnessing Bifunctional Ligands. Inorganic Chemistry Frontiers, 11, 2281-2289.
https://doi.org/10.1039/d4qi00314d
[18]  Wu, Y., Chau, H., Yeung, Y., Thor, W., Kai, H., Chan, W., et al. (2022) Versatile Synthesis of Multivalent Porphyrin-Peptide Conjugates by Direct Porphyrin Construction on Resin. Angewandte Chemie International Edition, 61, e202207532.
https://doi.org/10.1002/anie.202207532
[19]  Sun, X., He, G., Xiong, C., Wang, C., Lian, X., Hu, L., et al. (2021) One-Pot Fabrication of Hollow Porphyrinic MOF Nanoparticles with Ultrahigh Drug Loading toward Controlled Delivery and Synergistic Cancer Therapy. ACS Applied Materials & Interfaces, 13, 3679-3693.
https://doi.org/10.1021/acsami.0c20617
[20]  Shu, Y., Liu, X., Zhang, M., Liu, B. and Wang, Z. (2024) Deactivation of Porphyrin Metal-Organic Framework in Advanced Oxidation Process: Photobleaching and Underlying Mechanism. Applied Catalysis B: Environment and Energy, 346, Article 123746.
https://doi.org/10.1016/j.apcatb.2024.123746
[21]  Zhou, Q., Dutta, D., Cao, Y. and Ge, Z. (2023) Oxidation-Responsive Polymof Nanoparticles for Combination Photodynamic-Immunotherapy with Enhanced STING Activation. ACS Nano, 17, 9374-9387.
https://doi.org/10.1021/acsnano.3c01333
[22]  Yang, C., Tian, S., Qiu, W., Mo, L. and Lin, W. (2023) Hierarchical MOF@AuNP/Hairpin Nanotheranostic for Enhanced Photodynamic Therapy via O2 Self-Supply and Cancer-Related MicroRNA Imaging in vivo. Analytical Chemistry, 95, 16279-16288.
https://doi.org/10.1021/acs.analchem.3c03216
[23]  Tang, Y., Shi, Y., Su, Y., Cao, S., Hu, J., Zhou, H., et al. (2024) Enhanced Capacitive Deionization of Hollow Mesoporous Carbon Spheres/MOFs Derived Nanocomposites by Interface‐Coating and Space‐Encapsulating Design. Advanced Science, 11, Article ID: 2403802.
https://doi.org/10.1002/advs.202403802
[24]  Tan, C., Li, X., Li, Z., Lu, S., Wang, F., Liu, Y., et al. (2024) Near-Infrared-Responsive Nanoplatforms Integrating Dye-Sensitized Upconversion and Heavy-Atom Effect for Enhanced Photodynamic Therapy Efficacy. Nano Today, 54, Article 102089.
https://doi.org/10.1016/j.nantod.2023.102089
[25]  Li, J., Liu, P., Chen, Y., Zhou, J., Li, J., Yang, J., et al. (2023) A Customized Hydrophobic Porous Shell for MOF-5. Journal of the American Chemical Society, 145, 19707-19714.
https://doi.org/10.1021/jacs.3c04831
[26]  Chen, H., Wang, M., Yang, Q., Liu, J., Liu, F., Zhu, X., et al. (2025) Multifunctional Porphyrinic Metal-Organic Framework-Based Nanoplatform Regulating Reactive Oxygen Species Achieves Efficient Imaging-Guided Cascaded Nanocatalytic Therapy. Journal of Colloid and Interface Science, 684, 423-438.
https://doi.org/10.1016/j.jcis.2025.01.041
[27]  Zang, R., Liu, Y., Wang, Y., Feng, L., Ge, Y., Qin, M., et al. (2025) Defect Engineering Zr‐MOF‐Endowed Activity‐dimension Dual‐Sieving Strategy for Anti‐Acid Recognition of Real Phosphoryl Fluoride Nerve Agents. Advanced Functional Materials.
https://doi.org/10.1002/adfm.202425082
[28]  Zhang, Z., Liu, Z., Chen, X., Wei, Y., Yu, H., Zhang, J., et al. (2025) Plasma-Liquid‐Induced Synthesis of Scandium-Metalloporphyrin Frameworks for Boosted Sensing and Photosensitization. Advanced Materials, 37, Article ID: 2412071.
https://doi.org/10.1002/adma.202412071
[29]  Jie, M., Lan, S., Zhu, B., Zhu, A., Yue, X., Xiang, Q., et al. (2024) Europium Functionalized Porphyrin-Based Metal-Organic Framework Heterostructure and Hydrogel for Visual Ratiometric Fluorescence Sensing of Sulfonamides in Foods. Food Chemistry, 458, Article 140304.
https://doi.org/10.1016/j.foodchem.2024.140304
[30]  Chai, H., Yu, K., Zhao, Y., Zhang, Z., Wang, S., Huang, C., et al. (2023) MOF-on-MOF Dual Enzyme-Mimic Nanozyme with Enhanced Cascade Catalysis for Colorimetric/Chemiluminescent Dual-Mode Aptasensing. Analytical Chemistry, 95, 10785-10794.
https://doi.org/10.1021/acs.analchem.3c01905
[31]  Chai, H., Li, Y., Yu, K., Yuan, Z., Guan, J., Tan, W., et al. (2023) Two-Site Enhanced Porphyrinic Metal-Organic Framework Nanozymes and Nano-/Bioenzyme Confined Catalysis for Colorimetric/Chemiluminescent Dual-Mode Visual Biosensing. Analytical Chemistry, 95, 16383-16391.
https://doi.org/10.1021/acs.analchem.3c03872
[32]  Li, Y., Li, J., Zhu, D., Wang, J., Shu, G., Li, J., et al. (2022) 2D Zn‐Porphyrin‐Based Co(II)‐MOF with 2‐Methylimidazole Sitting Axially on the Paddle-Wheel Units: An Efficient Electrochemiluminescence Bioassay for SARS‐CoV‐2. Advanced Functional Materials, 32, Article ID: 2209743.
https://doi.org/10.1002/adfm.202209743
[33]  Zhou, Z., Wang, J., Hou, S., Mukherjee, S. and Fischer, R.A. (2023) Room Temperature Synthesis Mediated Porphyrinic NanoMOF Enables Benchmark Electrochemical Biosensing. Small, 19, Article ID: 2301933.
https://doi.org/10.1002/smll.202301933
[34]  Yan, T., Zhang, G., Yu, K., Chai, H., Tian, M., Qu, L., et al. (2023) Smartphone Light-Driven Zinc Porphyrinic MOF Nanosheets-Based Enzyme-Free Wearable Photoelectrochemical Sensor for Continuous Sweat Vitamin C Detection. Chemical Engineering Journal, 455, Article 140779.
https://doi.org/10.1016/j.cej.2022.140779

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133