|
钙钛矿量子点的原位制备及其全息显示屏应用
|
Abstract:
近年来,卤化钙钛矿因其在光电领域中的优异性能在光伏、发光二极管、激光器和光电探测器等前沿领域中有广泛的应用。本文将CsPbI3钙钛矿前驱体与聚丙烯腈聚合物混合后旋涂成膜,100℃下经过不同时间的退火处理,原位生成了钙钛矿量子点薄膜,测试了其荧光强度随时间的变化。结果表明,厚度为1.7 μm的钙钛矿量子点薄膜在120 min的退火时间下,其荧光特性最佳,达到最高荧光强度和最窄半高宽,并验证了其优异的荧光稳定性。在此基础上,将携带“USST”字母信息的全息图输入空间光调制器,将量子点薄膜置于原先用于采集光信号的CCD相机位置进行测试,成功实现了目标信息的成像,验证了钙钛矿量子点薄膜在全息显示方面的应用潜力。本研究利用钙钛矿量子点的光致发光成像代替了传统CCD相机的光电转换过程,为相关领域的进一步研究提供了新思路。
In recent years, halide perovskites have demonstrated extensive applications in cutting-edge fields such as photovoltaics, light-emitting diodes, lasers, and photodetectors due to their exceptional optoelectronic properties. In this study, we mixed CsPbI3 perovskite precursor with polyacrylonitrile and spin-coated composite thin film. Through annealing treatments at 100?C for varying durations, in-situ fabrication of perovskite quantum dot in polymer matrix was achieved, and the fluorescence intensity variations over time were systematically characterized. The results revealed that PQD films with a thickness of 1.7 μm exhibited optimal fluorescence performance after 120 min of annealing, achieving the highest fluorescence intensity and narrowest full width at half maximum, while confirming excellent fluorescence stability. Based on these results, a holographic pattern encoding the letters “USST” was input into a spatial light modulator. The PQD film was then positioned at the location previously occupied by the CCD camera for light signal acquisition. The target information was successfully imaged, confirming the potential of PQD films for holographic display applications. This work replaces the traditional photoelectric conversion process of CCD cameras with photoluminescence imaging of perovskite quantum dots, providing novel pathways for related fields.
[1] | Yang, W.S., Park, B., Jung, E.H., Jeon, N.J., Kim, Y.C., Lee, D.U., et al. (2017) Iodide Management in Formamidinium-Lead-Halide-Based Perovskite Layers for Efficient Solar Cells. Science, 356, 1376-1379. https://doi.org/10.1126/science.aan2301 |
[2] | Jung, H.S., Han, G.S., Park, N. and Ko, M.J. (2019) Flexible Perovskite Solar Cells. Joule, 3, 1850-1880. https://doi.org/10.1016/j.joule.2019.07.023 |
[3] | Stranks, S.D. and Snaith, H.J. (2015) Metal-Halide Perovskites for Photovoltaic and Light-Emitting Devices. Nature Nanotechnology, 10, 391-402. https://doi.org/10.1038/nnano.2015.90 |
[4] | Protesescu, L., Yakunin, S., Bodnarchuk, M.I., Krieg, F., Caputo, R., Hendon, C.H., et al. (2015) Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut. Nano Letters, 15, 3692-3696. https://doi.org/10.1021/nl5048779 |
[5] | Zhang, F., Zhong, H., Chen, C., Wu, X., Hu, X., Huang, H., et al. (2015) Brightly Luminescent and Color-Tunable Colloidal Ch3Nh3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology. ACS Nano, 9, 4533-4542. https://doi.org/10.1021/acsnano.5b01154 |
[6] | Song, J., Li, J., Li, X., Xu, L., Dong, Y. and Zeng, H. (2015) Quantum Dot Light‐emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3). Advanced Materials, 27, 7162-7167. https://doi.org/10.1002/adma.201502567 |
[7] | Sutton, R.J., Eperon, G.E., Miranda, L., Parrott, E.S., Kamino, B.A., Patel, J.B., et al. (2016) Bandgap‐Tunable Cesium Lead Halide Perovskites with High Thermal Stability for Efficient Solar Cells. Advanced Energy Materials, 6, Article ID: 1502458. https://doi.org/10.1002/aenm.201502458 |
[8] | Swarnkar, A., Marshall, A.R., Sanehira, E.M., Chernomordik, B.D., Moore, D.T., Christians, J.A., et al. (2016) Quantum Dot-Induced Phase Stabilization of Α-CsPbI3 Perovskite for High-Efficiency Photovoltaics. Science, 354, 92-95. https://doi.org/10.1126/science.aag2700 |
[9] | Kulbak, M., Gupta, S., Kedem, N., Levine, I., Bendikov, T., Hodes, G., et al. (2015) Cesium Enhances Long-Term Stability of Lead Bromide Perovskite-Based Solar Cells. The Journal of Physical Chemistry Letters, 7, 167-172. https://doi.org/10.1021/acs.jpclett.5b02597 |
[10] | Tsai, H., Nie, W., Blancon, J., Stoumpos, C.C., Asadpour, R., Harutyunyan, B., et al. (2016) High-Efficiency Two-Dimensional Ruddlesden-Popper Perovskite Solar Cells. Nature, 536, 312-316. https://doi.org/10.1038/nature18306 |
[11] | Peng, M., Wang, Y., Shen, Q., Xie, X., Zheng, H., Ma, W., et al. (2018) High-Performance Flexible and Broadband Photodetectors Based on PbS Quantum Dots/ZnO Nanoparticles Heterostructure. Science China Materials, 62, 225-235. https://doi.org/10.1007/s40843-018-9311-9 |
[12] | Shirasaki, Y., Supran, G.J., Bawendi, M.G. and Bulović, V. (2012) Emergence of Colloidal Quantum-Dot Light-Emitting Technologies. Nature Photonics, 7, 13-23. https://doi.org/10.1038/nphoton.2012.328 |
[13] | Zhu, H., Fu, Y., Meng, F., Wu, X., Gong, Z., Ding, Q., et al. (2015) Lead Halide Perovskite Nanowire Lasers with Low Lasing Thresholds and High Quality Factors. Nature Materials, 14, 636-642. https://doi.org/10.1038/nmat4271 |
[14] | Yakunin, S., Protesescu, L., Krieg, F., Bodnarchuk, M.I., Nedelcu, G., Humer, M., et al. (2015) Low-Threshold Amplified Spontaneous Emission and Lasing from Colloidal Nanocrystals of Caesium Lead Halide Perovskites. Nature Communications, 6, Article NO. 8056. https://doi.org/10.1038/ncomms9056 |
[15] | Hao, X., Wang, T., Zhu, X., Hou, L., Nie, L., Liu, H., et al. (2024) Color-Tunable CsCdCl3 Perovskite for Low-Temperature Anticounterfeiting and Information Storage Applications. Inorganic Chemistry, 63, 16047-16055. https://doi.org/10.1021/acs.inorgchem.4c02629 |
[16] | Zhang, F., Liang, W., Wang, L., Ma, Z., Ji, X., Wang, M., et al. (2021) Moisture‐Induced Reversible Phase Conversion of Cesium Copper Iodine Nanocrystals Enables Advanced Anti‐Counterfeiting. Advanced Functional Materials, 31, Article ID: 2105771. https://doi.org/10.1002/adfm.202105771 |
[17] | Swarnkar, A., Chulliyil, R., Ravi, V.K., Irfanullah, M., Chowdhury, A. and Nag, A. (2015) Colloidal CsPbBr3 Perovskite Nanocrystals: Luminescence Beyond Traditional Quantum Dots. Angewandte Chemie, 127, 15644-15648. https://doi.org/10.1002/ange.201508276 |
[18] | Akkerman, Q.A., Rainò, G., Kovalenko, M.V. and Manna, L. (2018) Genesis, Challenges and Opportunities for Colloidal Lead Halide Perovskite Nanocrystals. Nature Materials, 17, 394-405. https://doi.org/10.1038/s41563-018-0018-4 |
[19] | Kim, Y.D., Kim, H., Cho, Y., Ryoo, J.H., Park, C., Kim, P., et al. (2015) Bright Visible Light Emission from Graphene. Nature Nanotechnology, 10, 676-681. https://doi.org/10.1038/nnano.2015.118 |
[20] | Li, J., Xu, L., Wang, T., Song, J., Chen, J., Xue, J., et al. (2016) 50‐Fold EQE Improvement up to 6.27% of Solution‐processed All‐Inorganic Perovskite CsPbBr3 QLEDs via Surface Ligand Density Control. Advanced Materials, 29, Article ID: 1603885. https://doi.org/10.1002/adma.201603885 |
[21] | Wang, Y., Li, X., Song, J., Xiao, L., Zeng, H. and Sun, H. (2015) All‐Inorganic Colloidal Perovskite Quantum Dots: A New Class of Lasing Materials with Favorable Characteristics. Advanced Materials, 27, 7101-7108. https://doi.org/10.1002/adma.201503573 |
[22] | Kovalenko, M.V., Protesescu, L. and Bodnarchuk, M.I. (2017) Properties and Potential Optoelectronic Applications of Lead Halide Perovskite Nanocrystals. Science, 358, 745-750. https://doi.org/10.1126/science.aam7093 |
[23] | Janesick, J.R. (2001) Scientific Charge-Coupled Devices. SPIE Press, 83. |
[24] | Maier, S.A. (2007) Plasmonics: Fundamentals and Applications. Springer. |
[25] | Zheludev, N.I. and Kivshar, Y.S. (2012) From Metamaterials to Metadevices. Nature Materials, 11, 917-924. https://doi.org/10.1038/nmat3431 |
[26] | Efros, A.L. and Rosen, M. (2000) The Electronic Structure of Semiconductor Nanocrystals. Annual Review of Materials Science, 30, 475-521. https://doi.org/10.1146/annurev.matsci.30.1.475 |
[27] | Klimov, V.I. (2007) Spectral and Dynamical Properties of Multiexcitons in Semiconductor Nanocrystals. Annual Review of Physical Chemistry, 58, 635-673. https://doi.org/10.1146/annurev.physchem.58.032806.104537 |
[28] | Zhang, X., Lin, H., Huang, H., Reckmeier, C., Zhang, Y., Choy, W.C.H., et al. (2016) Enhancing the Brightness of Cesium Lead Halide Perovskite Nanocrystal Based Green Light-Emitting Devices through the Interface Engineering with Perfluorinated Ionomer. Nano Letters, 16, 1415-1420. https://doi.org/10.1021/acs.nanolett.5b04959 |
[29] | Huang, H., Lin, H., Kershaw, S.V., Susha, A.S., Choy, W.C.H. and Rogach, A.L. (2016) Polyhedral Oligomeric Silsesquioxane Enhances the Brightness of Perovskite Nanocrystal-Based Green Light-Emitting Devices. The Journal of Physical Chemistry Letters, 7, 4398-4404. https://doi.org/10.1021/acs.jpclett.6b02224 |
[30] | LaMer, V.K. and Dinegar, R.H. (1950) Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society, 72, 4847-4854. https://doi.org/10.1021/ja01167a001 |
[31] | Venables, J.A., Spiller, G.D.T. and Hanbucken, M. (1984) Nucleation and Growth of Thin Films. Reports on Progress in Physics, 47, 399-459. https://doi.org/10.1088/0034-4885/47/4/002 |
[32] | Brus, L.E. (1984) Electron-Electron and Electron-Hole Interactions in Small Semiconductor Crystallites: The Size Dependence of the Lowest Excited Electronic State. The Journal of Chemical Physics, 80, 4403-4409. https://doi.org/10.1063/1.447218 |
[33] | Alivisatos, A.P. (1996) Semiconductor Clusters, Nanocrystals, and Quantum Dots. Science, 271, 933-937. https://doi.org/10.1126/science.271.5251.933 |
[34] | Ekimov, A.I. and Onushchenko, A.A. (2023) Quantum Size Effect in Three-Dimensional Microscopic Semiconductor Crystals. JETP Letters, 118, S15-S17. https://doi.org/10.1134/s0021364023130040 |
[35] | Janesick, J.R., Elliott, T., Collins, S., Blouke, M.M. and Freeman, J. (1987) Scientific Charge-Coupled Devices. Optical Engineering, 26, 692-714. https://doi.org/10.1117/12.7974139 |
[36] | Kreis, T. (2006) Handbook of Holographic Interferometry: Optical and Digital Methods. John Wiley & Sons. |
[37] | Yaroslavsky, L. (2013) Digital Holography and Digital Image Processing: Principles, Methods, Algorithms. Springer Science & Business Media. |
[38] | Cuche, E., Bevilacqua, F. and Depeursinge, C. (1999) Digital Holography for Quantitative Phase-Contrast Imaging. Optics Letters, 24, 291-293. https://doi.org/10.1364/ol.24.000291 |