全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

氮掺杂石墨烯负载氮化钴及其电催化水分解性能研究
Research on Cobalt Nitride Supported on Nitrogen-Doped Graphene and Its Electrocatalytic Water Splitting Performance

DOI: 10.12677/japc.2025.142018, PP. 191-200

Keywords: 钴,氮掺杂石墨烯,电催化,氮化物
Cobalt
, Nitrogen-Doped Graphene, Electrocatalysis, Nitride

Full-Text   Cite this paper   Add to My Lib

Abstract:

析氢反应和析氧反应是电化学水分解和金属–空气电池等可再生能源技术的基础反应。各种过渡金属(Co、Fe、Ni等)基催化剂由于具有良好的电催化活性而被大量探索,以作为贵金属潜在的替代品。本研究成功制备出负载于氮掺杂石墨烯(NGO)上的双功能电催化剂(Co5.47N/NGO)。在1 M KOH中,达到10 mA/cm2的电流密度,OER过电位需352 mV,HER过电位需104 mV。(Co5.47N/NGO)作为电解池的阴极和阳极时,1.79 V的电压就能达到10 mA/cm2的电流密度,并表现出优异的稳定性。该研究简化了氮化钴的合成过程,并且片状NGO减少了纳米粒子的团聚,提供了大量的活性位点,从而提高了电催化活性。
The hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) are fundamental reactions in renewable energy technologies such as electrochemical water splitting and metal-air batteries. A variety of transition metal (Co, Fe, Ni, etc.)—based catalysts have been extensively explored due to their good electrocatalytic activity as potential substitutes for noble metals. In this study, a bifunctional electrocatalyst (Co5.47N/NGO) supported on nitrogen-doped graphene (NGO) was successfully prepared. In 1 M KOH, to reach a current density of 10 mA/cm2, the overpotential for OER is 352 mV and the overpotential for HER is 104 mV. When (Co5.47N/NGO) serves as the cathode and anode of the electrolytic cell, a voltage of 1.79 V can achieve a current density of 10 mA/cm2 and exhibit excellent stability. This research simplifies the synthesis process of cobalt nitride, and the flake-shaped NGO reduces the agglomeration of nanoparticles and provides a large number of active sites, thus improving the electrocatalytic activity.

References

[1]  Li, Q., Guo, H., Xue, R., Wang, M., Xu, M., Yang, W., et al. (2020) Self-Assembled Mo Doped Ni-MoF Nanosheets Based Electrode Material for High Performance Battery-Supercapacitor Hybrid Device. International Journal of Hydrogen Energy, 45, 20820-20831.
https://doi.org/10.1016/j.ijhydene.2020.05.143
[2]  Zhao, Q., Yan, Z., Chen, C. and Chen, J. (2017) Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond. Chemical Reviews, 117, 10121-10211.
https://doi.org/10.1021/acs.chemrev.7b00051
[3]  Siracusano, S., Van Dijk, N., Payne-Johnson, E., Baglio, V. and Aricò, A.S. (2015) Nanosized IrOx and IrRuOx Electrocatalysts for the O2 Evolution Reaction in PEM Water Electrolysers. Applied Catalysis B: Environmental, 164, 488-495.
https://doi.org/10.1016/j.apcatb.2014.09.005
[4]  Gasteiger, H.A., Kocha, S.S., Sompalli, B. and Wagner, F.T. (2005) Activity Benchmarks and Requirements for Pt, Pt-Alloy, and Non-Pt Oxygen Reduction Catalysts for PEMFCs. Applied Catalysis B: Environmental, 56, 9-35.
https://doi.org/10.1016/j.apcatb.2004.06.021
[5]  Shudo, Y., Fukuda, M., Islam, M.S., Kuroiwa, K., Sekine, Y., Karim, M.R., et al. (2021) 3D Porous Ni/NiOx as a Bifunctional Oxygen Electrocatalyst Derived from Freeze-Dried Ni(OH)2. Nanoscale, 13, 5530-5535.
https://doi.org/10.1039/d0nr08034a
[6]  Tsutsumi, M., Islam, M.S., Karim, M.R., Rabin, N.N., Ohtani, R., Nakamura, M., et al. (2017) Tri-Functional OER, HER and ORR Electrocatalyst Electrodes from in Situ Metal-Nitrogen Co-Doped Oxidized Graphite Rods. Bulletin of the Chemical Society of Japan, 90, 950-954.
https://doi.org/10.1246/bcsj.20170102
[7]  Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M., et al. (2008) High-Throughput Synthesis of Zeolitic Imidazolate Frameworks and Application to CO2 Capture. Science, 319, 939-943.
https://doi.org/10.1126/science.1152516
[8]  Rieter, W.J., Taylor, K.M.L. and Lin, W. (2007) Surface Modification and Functionalization of Nanoscale Metal-Organic Frameworks for Controlled Release and Luminescence Sensing. Journal of the American Chemical Society, 129, 9852-9853.
https://doi.org/10.1021/ja073506r
[9]  Palaniselvam, T., Biswal, B.P., Banerjee, R. and Kurungot, S. (2013) Zeolitic Imidazolate Framework (ZIF)‐Derived, Hollow‐Core, Nitrogen‐Doped Carbon Nanostructures for Oxygen‐Reduction Reactions in PEFCs. ChemistryA European Journal, 19, 9335-9342.
https://doi.org/10.1002/chem.201300145
[10]  Liu, X., Dong, J., You, B. and Sun, Y. (2016) Competent Overall Water-Splitting Electrocatalysts Derived from ZIF-67 Grown on Carbon Cloth. RSC Advances, 6, 73336-73342.
https://doi.org/10.1039/c6ra17030g
[11]  Chaikittisilp, W., Torad, N.L., Li, C., Imura, M., Suzuki, N., Ishihara, S., et al. (2014) Synthesis of Nanoporous Carbon-Cobalt‐Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal-Organic Frameworks. ChemistryA European Journal, 20, 4217-4221.
https://doi.org/10.1002/chem.201304404
[12]  Dou, S., Li, X., Tao, L., Huo, J. and Wang, S. (2016) Cobalt Nanoparticle-Embedded Carbon Nanotube/Porous Carbon Hybrid Derived from MOF-Encapsulated Co3O4 for Oxygen Electrocatalysis. Chemical Communications, 52, 9727-9730.
https://doi.org/10.1039/c6cc05244d
[13]  Wang, H., Zhang, L., Zhang, W., Sun, S. and Yao, S. (2023) Highly Efficient Spatial Three-Level Cop@ZIF-8/PNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting. Nanomaterials, 13, Article 1386.
https://doi.org/10.3390/nano13081386
[14]  Gong, C., Li, W., Lei, Y., He, X., Chen, H., Du, X., et al. (2022) Interfacial Engineering of ZIF-67 Derived CoSe/Co(OH)2 Catalysts for Efficient Overall Water Splitting. Composites Part B: Engineering, 236, Article ID: 109823.
https://doi.org/10.1016/j.compositesb.2022.109823
[15]  Li, X., Jiang, Q., Dou, S., Deng, L., Huo, J. and Wang, S. (2016) ZIF-67-Derived Co-Nc@CoP-Nc Nanopolyhedra as an Efficient Bifunctional Oxygen Electrocatalyst. Journal of Materials Chemistry A, 4, 15836-15840.
https://doi.org/10.1039/c6ta06434e
[16]  Howarth, A.J., Liu, Y., Li, P., Li, Z., Wang, T.C., Hupp, J.T., et al. (2016) Chemical, Thermal and Mechanical Stabilities of Metal-Organic Frameworks. Nature Reviews Materials, 1, Article No. 15018.
https://doi.org/10.1038/natrevmats.2015.18
[17]  Lu, X., Liao, P., Wang, J., Wu, J., Chen, X., He, C., et al. (2016) An Alkaline-Stable, Metal Hydroxide Mimicking Metal-Organic Framework for Efficient Electrocatalytic Oxygen Evolution. Journal of the American Chemical Society, 138, 8336-8339.
https://doi.org/10.1021/jacs.6b03125
[18]  Pan, Y., Sun, K., Liu, S., Cao, X., Wu, K., Cheong, W., et al. (2018) Core-Shell ZIF-8@ZIF-67-Derived Cop Nanoparticle-Embedded N-Doped Carbon Nanotube Hollow Polyhedron for Efficient Overall Water Splitting. Journal of the American Chemical Society, 140, 2610-2618.
https://doi.org/10.1021/jacs.7b12420
[19]  Tong, X., Liao, W., Fu, Y., Qian, M., Dai, H., Mei, L., et al. (2022) Ag‐Doped Cop Hollow Nanoboxes as Efficient Water Splitting Electrocatalysts and Antibacterial Materials. ChemistrySelect, 7, e202202343.
https://doi.org/10.1002/slct.202202343
[20]  Afkhami-Ardekani, M., Naimi-Jamal, M.R., Doaee, S. and Rostamnia, S. (2022) Solvent-Free Mechanochemical Preparation of Metal-Organic Framework ZIF-67 Impregnated by Pt Nanoparticles for Water Purification. Catalysts, 13, Article 9.
https://doi.org/10.3390/catal13010009
[21]  Wakamatsu, S., Islam, M.S., Shudo, Y., Fukuda, M., Tagawa, R., Goto, N., et al. (2023) An Efficient Oxygen Evolution Reaction Catalyst Using Ni-Co Layered Double Hydroxide Anchored on Reduced Graphene Oxide. Energy Advances, 2, 1375-1380.
https://doi.org/10.1039/d3ya00192j
[22]  Munawar, T., Bashir, A., Nadeem, M.S., Mukhtar, F., Manzoor, S., Ashiq, M.N., et al. (2023) Electrochemical Performance Evaluation of Bimetallic Sulfide Nanocomposite with Fullerene (CeNdS/C60) for Efficient Oxygen Evolution Reaction (OER). Energy & Fuels, 37, 1370-1386.
https://doi.org/10.1021/acs.energyfuels.2c03661
[23]  Denis, P.A. (2022) Heteroatom Codoped Graphene: The Importance of Nitrogen. ACS Omega, 7, 45935-45961.
https://doi.org/10.1021/acsomega.2c06010
[24]  Chen, H., Luo, Q., Liu, T., Tai, M., Lin, J., Murugadoss, V., et al. (2020) Boosting Multiple Interfaces by Co-Doped Graphene Quantum Dots for High Efficiency and Durability Perovskite Solar Cells. ACS Applied Materials & Interfaces, 12, 13941-13949.
https://doi.org/10.1021/acsami.9b23255
[25]  Nadeem, M.S., Munawar, T., Mukhtar, F., Naveed ur Rahman, M., Riaz, M., Hussain, A., et al. (2021) Hydrothermally Derived Co, Ni Co-Doped ZnO Nanorods; Structural, Optical, and Morphological Study. Optical Materials, 111, Article ID: 110606.
https://doi.org/10.1016/j.optmat.2020.110606
[26]  Sheng, J., Wang, L., Deng, L., Zhang, M., He, H., Zeng, K., et al. (2018) MOF-Templated Fabrication of Hollow Co4N@N-Doped Carbon Porous Nanocages with Superior Catalytic Activity. ACS Applied Materials & Interfaces, 10, 7191-7200.
https://doi.org/10.1021/acsami.8b00573
[27]  Grimaud, A., Diaz-Morales, O., Han, B., Hong, W.T., Lee, Y., Giordano, L., et al. (2017) Activating Lattice Oxygen Redox Reactions in Metal Oxides to Catalyse Oxygen Evolution. Nature Chemistry, 9, 457-465.
https://doi.org/10.1038/nchem.2695
[28]  Golubeva, M.A., Mukhtarova, M., Sadovnikov, A.A. and Maximov, A.L. (2022) Bulk Molybdenum and Tungsten Phosphides for Selective Phenol Production from Guaiacol. ACS Omega, 7, 40586-40595.
https://doi.org/10.1021/acsomega.2c06396
[29]  Wang, X., Pan, Z., Chu, X., Huang, K., Cong, Y., Cao, R., et al. (2019) Atomic‐Scale Insights into Surface Lattice Oxygen Activation at the Spinel/Perovskite Interface of Co3O4/La0.3Sr0.7CoO3. Angewandte Chemie International Edition, 58, 11720-11725.
https://doi.org/10.1002/anie.201905543

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133