全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

气候变化情境下吴茱萸的潜在适生区分布预测
Prediction of Potential Suitable Habitat Distribution of Euodia rutaecarpa under Climate Change Scenarios

DOI: 10.12677/ccrl.2025.143041, PP. 411-421

Keywords: 吴茱萸,环境因子,潜在适生区,MaxEnt,ArcGIS
Euodia rutaecarpa
, Environmental Factors, Potential Suitable Habitat, MaxEnt, ArcGIS

Full-Text   Cite this paper   Add to My Lib

Abstract:

吴茱萸是中国传统的中药材,野生资源较少,主要来源于种植,预测吴茱萸的潜在适生区对吴茱萸的栽培和植物的保护具有指导意义。利用吴茱萸在中国的318个地理分布记录,结合14个有效环境因子,应用最大熵模型(MaxEnt)研究影响吴茱萸适宜性分布的生态因子,结合ArcGIS软件预测未来(2041~2060年、2080~2100年)吴茱萸在中国的潜在适生区分布。研究结果表明:(1) MaxEnt模型的ROC曲线的平均训练集的AUC值为0.945 (>0.9),说明该模型构建准确可靠。(2) 影响吴茱萸适宜性生长的主要环境因子为最冷季度的平均温度(Bio11)、最暖季度的降水量(Bio18)、温度季节性变化(Bio4)和坡向(Aspect),其中最冷季度的平均温度(Bio11)起到至关重要的作用。(3) 当前吴茱萸在中国分布较广,高适生区在江西、广西、贵州、湖南等省份,总适生区面积为131.69 × 104 km2,占我国陆地表面积的13.72%。(4) 未来气候变化有利于吴茱萸在我国的分布,其高适生区和总适生区在不同气候情境下均有明显的扩张。以上预测为吴茱萸潜在适生区分布提供了参考,为吴茱萸的物种资源保护和开发利用提供了视野。
Euodia rutaecarpa is a traditional medicinal herb in China. The wild resources of E. rutaecarpa are scrace, and they are primarily sourced from cultivation. Predicting the potential suitable areas of E. rutaecarpa holds guiding significance for its cultivation and plant conservation. Using the MaxEnt (Maximum Entropy) and ArcGIS software, we predicted potential suitable habitat of E. rutaecarpa in China in the future (2041~2060, 2080~2100) through 318 occurrence records along with 14 environmental factors. The results indicated the following: (1) The model exhibited outstanding accuracy with AUC = 0.945 (>0.9), indicating that the model is constructed accurately and reliably. (2) The primary environmental factors influencing the distribution of E. rutaecarpa were average temperature of coldestquarter (Bio11), precipitation in the warmest quarter (Bio18), seasonal variation of temperature (Bio4), and aspect. Among these, average temperature of coldestquarter (Bio11) was the most influential environmental factor on E. rutaecarpa distribution. (3) Currently, E. rutaecarpa is widely distributed in China, with suitability areas located in provinces such as Jiangxi, Guangxi, Guizhou, and Hunan, covering 131.69 × 104 km2 (13.72% of China’s total land area). (4) Future climate change is projected to favor the distribution of E. rutaecarpa in China, with notable expansion in its potential total suitable areas and high suitability areas under different climate scenarios. These accurate predictions serve as a scientific references for the identification of suitable areas of E. rutaecarpa, and provide insights into both the conservation and sustainable utilization of its germplasm resources.

References

[1]  Gong, B., Weng, B., Yan, D., Qin, T., Wang, H. and Bi, W. (2018) Variation of Hydrothermal Conditions under Climate Change in Naqu Prefecture, Tibet Plateau, China. International Journal of Environmental Research and Public Health, 15, Article 2271.
https://doi.org/10.3390/ijerph15102271
[2]  Graham, E.M., Reside, A.E., Atkinson, I., Baird, D., Hodgson, L., James, C.S., et al. (2019) Climate Change and Biodiversity in Australia: A Systematic Modelling Approach to Nationwide Species Distributions. Australasian Journal of Environmental Management, 26, 112-123.
https://doi.org/10.1080/14486563.2019.1599742
[3]  Applequist, W.L., Brinckmann, J.A., Cunningham, A.B., Hart, R.E., Heinrich, M., Katerere, D.R., et al. (2019) Scientists’ Warning on Climate Change and Medicinal Plants. Planta Medica, 86, 10-18.
https://doi.org/10.1055/a-1041-3406
[4]  Zhan, P., Wang, F., Xia, P., Zhao, G., Wei, M., Wei, F., et al. (2022) Assessment of Suitable Cultivation Region for Panax Notoginseng under Different Climatic Conditions Using Maxent Model and High-Performance Liquid Chromatography in China. Industrial Crops and Products, 176, Article 114416.
https://doi.org/10.1016/j.indcrop.2021.114416
[5]  Thuiller, W., Lavorel, S. and Araújo, M.B. (2005) Niche Properties and Geographical Extent as Predictors of Species Sensitivity to Climate Change. Global Ecology and Biogeography, 14, 347-357.
https://doi.org/10.1111/j.1466-822x.2005.00162.x
[6]  Colli-Silva, M., Pirani, J.R. and Zizka, A. (2022) Ecological Niche Models and Point Distribution Data Reveal a Differential Coverage of the Cacao Relatives (Malvaceae) in South American Protected Areas. Ecological Informatics, 69, Article 101668.
https://doi.org/10.1016/j.ecoinf.2022.101668
[7]  Yang, Y., He, J., Liu, Y., Zeng, J., Zeng, L., He, R., et al. (2023) Assessment of Chinese Suitable Habitats of Zanthoxylum nitidum in Different Climatic Conditions by Maxent Model, HPLC, and Chemometric Methods. Industrial Crops and Products, 196, Article 116515.
https://doi.org/10.1016/j.indcrop.2023.116515
[8]  Ahmadi, M., Hemami, M., Kaboli, M. and Shabani, F. (2023) MaxEnt Brings Comparable Results When the Input Data Are Being Completed; Model Parameterization of Four Species Distribution Models. Ecology and Evolution, 13, e9827.
https://doi.org/10.1002/ece3.9827
[9]  苏玉良, 赵伊玲, 殷宝, 等. 基于MaxEnt模型的云杉潜在分布模拟[J]. 建模与仿真, 2024, 13(6): 6211-6219.
[10]  中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1997: 65.
[11]  国家药典委员会. 中华人民共和国药典: 一部[M]. 北京: 中国医药科技出版社, 2020: 178-179.
[12]  吴梅青, 罗栩强, 唐海飞, 等. 不同炮制方法对吴茱萸指标成分含量的影响与评价[J]. 中国现代中药, 2020, 22(7): 1108-1112.
[13]  刘丽, 张笑敏, 许浚, 等. 吴茱萸化学成分和药理作用及质量标志物(Q-marker)的预测分析[J]. 中草药, 2020, 51(10): 2689-2702.
[14]  赵楠, 景云荣, 何婷婷, 等. 吴茱萸中总黄酮的提取及其抗氧化活性研究[J]. 湖北农业科学, 2020, 59(3): 118-121.
[15]  刘万丽, 邵进明, 易梦, 等. 吴茱萸碱与吴茱萸次碱对T2DMSD大鼠肝损伤的影响[J]. 生物医学, 2025, 15(1): 152-158.
[16]  唐锦程, 李玉丽, 王莎莎, 等. 吴茱萸本草考证及药理作用研究进展[J]. 中草药, 2024, 55(16): 5723-5734.
[17]  刘珊珊, 尹元元, 闫利华, 等. 吴茱萸药用植物资源调查[J]. 中国中医药信息杂志, 2016, 23(9): 5-9.
[18]  Xin, X.G., Wu, T.W., Zhang, J., et al. (2019) Introduction to the BCC model and its CMIP6 experiment. Progress in Climate Change Research, 15, 533-539.
[19]  Zhang, K., Zhang, Y., Zhou, C., Meng, J., Sun, J., Zhou, T., et al. (2019) Impact of Climate Factors on Future Distributions of Paeonia ostii across China Estimated by Maxent. Ecological Informatics, 50, 62-67.
https://doi.org/10.1016/j.ecoinf.2019.01.004
[20]  Hosni, E.M., Al-Khalaf, A.A., Naguib, R.M., Afify, A.E., Abdalgawad, A.A., Faltas, E.M., et al. (2022) Evaluation of Climate Change Impacts on the Global Distribution of the Calliphorid Fly Chrysomya albiceps Using GIS. Diversity, 14, Article 578.
https://doi.org/10.3390/d14070578
[21]  Chen, T., Acma, F.M., Amoroso, V.B., Medecilo Guiang, M.M. and Huang, B. (2022) Distribution of Climatic Suitability of Pellionia scabra Benth. (Urticaceae) in China. Applied Ecology and Environmental Research, 20, 4489-4498.
https://doi.org/10.15666/aeer/2005_44894498
[22]  Liu, H., Cheng, H., Xu, J., Hu, J., Zhao, C., Xing, L., et al. (2023) Genetic Diversity and Population Structure of Polygonatum cyrtonema Hua in China Using SSR Markers. PLOS ONE, 18, e0290605.
https://doi.org/10.1371/journal.pone.0290605
[23]  Ren, Q., Wu, D., Wu, C., Wang, Z., Jiao, J., Jiang, B., et al. (2020) Modeling the Potential Distribution of Machilus thunbergii under the Climate Change Patterns in China. Open Journal of Forestry, 10, 217-231.
https://doi.org/10.4236/ojf.2020.102015
[24]  Tarroso, P., Carvalho, S.B. and Brito, J.C. (2012) Simapse—Simulation Maps for Ecological Niche Modelling. Methods in Ecology and Evolution, 3, 787-791.
https://doi.org/10.1111/j.2041-210x.2012.00210.x
[25]  Wang, P., Luo, W., Zhang, Q., Han, S., Jin, Z., Liu, J., et al. (2024) Assessing the Impact of Climate Change on Three Populus Species in China: Distribution Patterns and Implications. Global Ecology and Conservation, 50, e02853.
https://doi.org/10.1016/j.gecco.2024.e02853
[26]  Pant, P., Pandey, S. and Dall’Acqua, S. (2021) The Influence of Environmental Conditions on Secondary Metabolites in Medicinal Plants: A Literature Review. Chemistry & Biodiversity, 18, e2100345.
https://doi.org/10.1002/cbdv.202100345
[27]  Deb, J.C., Phinn, S., Butt, N. and McAlpine, C.A. (2017) The Impact of Climate Change on the Distribution of Two Threatened Dipterocarp Trees. Ecology and Evolution, 7, 2238-2248.
https://doi.org/10.1002/ece3.2846

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133