全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

WRF模式海南地区地表要素最优初始化时间研究
Optimal Initialization Time for Surface Variables in WRF Model over Hainan Island

DOI: 10.12677/ccrl.2025.143040, PP. 399-410

Keywords: 数值天气预报初始化,平衡收敛时间,再分析资料,边界层参数化,海陆相互作用,中尺度气象模拟
Numerical Weather Prediction Initialization
, Spin-Up Time, Reanalysis Data, Boundary Layer Parameterization, Land-Sea Interaction, Mesoscale Meteorological Simulation

Full-Text   Cite this paper   Add to My Lib

Abstract:

数值天气预报的准确性极大地依赖于模式初始化场的质量及其平衡收敛过程,而这一过程在地形复杂、海陆交互显著的热带岛屿区域显得尤为关键。本研究基于WRF模式针对海南岛区域开展了不同分辨率初始场对模式平衡收敛特征的系统研究。采用ERA5 (0.25?)和ERA-Interim (0.75?)再分析资料作为初始场,通过设计短期和长期平行对比试验,分析了2米温度(T2)、2米比湿(Q2)及10米风场(U10、V10)等近地面要素的平衡收敛特征。研究发现,高分辨率初始场显著提升了模式的平衡收敛效率,ERA5驱动的模拟在长期积分中温度场平均收敛时间较ERA-Interim缩短2.7小时(17.4 vs 20.1小时),比湿场缩短3.3小时(18.1 vs 21.4小时),风场缩短3.0-3.5小时(U10:20.2 vs 23.2小时,V10:21.1 vs 24.6小时)。短期模拟结果表明,不同物理量具有显著的时间依赖特征:温度场的平均收敛时间为2.8小时,比湿场为3.3小时,风场则需要3.7~4.0小时。特别是在18时起报的预报中,ERA5温度场的动态时间规整(Dynamic Time Warping, DTW)相关系数达到最高值0.93,而ERA-Interim降至0.87,表明ERA5在处理日落前后的温度变化方面具有独特优势。基于研究结果,ERA5在各物理量的预报中均表现出更快的收敛速度和更高的预报准确性,这对提升热带海岛地区数值预报水平具有重要的参考价值。
The accuracy of numerical weather prediction heavily depends on the quality of model initialization fields and their spin-up process, which is particularly crucial in tropical island regions characterized by complex terrain and significant land-sea interactions. This study systematically investigated the impact of initial fields with different resolutions on model spin-up characteristics over Hainan Island using the WRF model. Using ERA5 (0.25?) and ERA-Interim (0.75?) reanalysis data as initial fields, we analyzed the spin-up characteristics of near-surface variables including 2-meter temperature (T2), 2-meter specific humidity (Q2), and 10-meter wind fields (U10, V10) through both short-term and long-term parallel experiments. Results demonstrated that high-resolution initial fields significantly enhanced model spin-up efficiency. In long-term simulations, ERA5-driven experiments showed shorter convergence times compared to ERA-Interim: temperature field convergence time decreased by 2.7 hours (17.4 vs 20.1 hours), specific humidity field by 3.3 hours (18.1 vs 21.4 hours), and wind fields by 3.0~3.5 hours (U10: 20.2 vs 23.2 hours, V10: 21.1 vs 24.6 hours). Short-term simulation results revealed distinct temporal dependencies among different physical variables: temperature field averaged 2.8 hours for convergence, specific humidity field required 3.3 hours, while wind fields needed 3.7~4.0 hours. Notably, in forecasts initialized at 18, ERA5 temperature field achieved the highest DTW correlation coefficient of 0.93, while ERA-Interim dropped to 0.87, indicating ERA5’s superior performance in capturing temperature variations during sunset transitions. Based on these findings, ERA5 demonstrated superior performance in both convergence speed and forecast accuracy across

References

[1]  Bjerknes, V. (2008) Das Problem der Wettervorhersage, betrachtet vom Standpunkte der Mechanic und der Physik.
[2]  Bauer, P., Thorpe, A. and Brunet, G. (2015) The Quiet Revolution of Numerical Weather Prediction. Nature, 525, 47-55.
https://doi.org/10.1038/nature14956
[3]  Wolcott, S.W. and Warner, T.T. (1981) A Moisture Analysis Procedure Utilizing Surface and Satellite Data. Monthly Weather Review, 109, 1989-1998.
https://doi.org/10.1175/1520-0493(1981)109<1989:amapus>2.0.co;2
[4]  Kasahara, A., Mizzi, A.P. and Donner, L.J. (1992) Impact of Cumulus Initialization on the Spinup of Precipitation Forecasts in the Tropics. Monthly Weather Review, 120, 1360-1380.
https://doi.org/10.1175/1520-0493(1992)120<1360:iociot>2.0.co;2
[5]  Short, C.J. and Petch, J. (2022) Reducing the Spin‐Up of a Regional NWP System without Data Assimilation. Quarterly Journal of the Royal Meteorological Society, 148, 1623-1643.
https://doi.org/10.1002/qj.4268
[6]  Scher, S. and Messori, G. (2019) Weather and Climate Forecasting with Neural Networks: Using General Circulation Models (GCMs) with Different Complexity as a Study Ground. Geoscientific Model Development, 12, 2797-2809.
https://doi.org/10.5194/gmd-12-2797-2019
[7]  Danek, C., Scholz, P. and Lohmann, G. (2019) Effects of High Resolution and Spinup Time on Modeled North Atlantic Circulation. Journal of Physical Oceanography, 49, 1159-1181.
https://doi.org/10.1175/jpo-d-18-0141.1
[8]  Zhong, Z., et al. (2007) Numerical Experiments on the Spin-Up Time for Seasonal-Scale Regional Climate Modeling.
[9]  Senatore, A., Mendicino, G., Gochis, D.J., Yu, W., Yates, D.N. and Kunstmann, H. (2015) Fully Coupled Atmosphere‐hydrology Simulations for the Central mediterranean: Impact of Enhanced Hydrological Parameterization for Short and Long Time Scales. Journal of Advances in Modeling Earth Systems, 7, 1693-1715.
https://doi.org/10.1002/2015ms000510
[10]  Giorgi, F. and Mearns, L.O. (1999) Introduction to Special Section: Regional Climate Modeling Revisited. Journal of Geophysical Research: Atmospheres, 104, 6335-6352.
https://doi.org/10.1029/98jd02072
[11]  Weiss, S., Pyle, M., Janjic, Z., Bright, D., Kain, J. and DiMego, G. (2008) The Operational High Resolution Window WRF Model Runs at NCEP: Advantages of Multiple Model Runs for Severe Convective Weather Forecasting.
[12]  Souto, M.J., Balseiro, C.F., Pérez-Muñuzuri, V., Xue, M. and Brewster, K. (2003) Impact of Cloud Analysis on Numerical Weather Prediction in the Galician Region of Spain. Journal of Applied Meteorology, 42, 129-140.
https://doi.org/10.1175/1520-0450(2003)042<0129:iocaon>2.0.co;2
[13]  Matte, D., Laprise, R., Thériault, J.M. and Lucas-Picher, P. (2017) Erratum to: Spatial Spin-Up of Fine Scales in a Regional Climate Model Simulation Driven by Low-Resolution Boundary Condition. Climate Dynamics, 49, 4315-4316.
https://doi.org/10.1007/s00382-017-3825-4
[14]  Errico, R. and Baumhefner, D. (1987) Predictability Experiments Using a High-Resolution Limited-Area Model. Monthly Weather Review, 115, 488-504.
https://doi.org/10.1175/1520-0493(1987)115<0488:peuahr>2.0.co;2
[15]  Anthes, R.A., Kuo, Y., Hsie, E., Low-Nam, S. and Bettge, T.W. (1989) Estimation of Skill and Uncertainty in Regional Numerical Models. Quarterly Journal of the Royal Meteorological Society, 115, 763-806.
https://doi.org/10.1256/smsqj.48802
[16]  Bryan, K. (1984) Accelerating the Convergence to Equilibrium of Ocean-Climate Models. Journal of Physical Oceanography, 14, 666-673.
https://doi.org/10.1175/1520-0485(1984)014<0666:atcteo>2.0.co;2
[17]  Khatiwala, S. and Visbeck, M. (2004) Accelerated Simulation of Passive Tracers in Ocean Circulation Models. Ocean Modelling, 9, 51-69.
https://doi.org/10.1016/s1463-5003(04)00030-7
[18]  Carlin, J.T., Gao, J., Snyder, J.C. and Ryzhkov, A.V. (2017) Assimilation of ZDR Columns for Improving the Spinup and Forecast of Convective Storms in Storm-Scale Models: Proof-of-Concept Experiments. Monthly Weather Review, 145, 5033-5057.
https://doi.org/10.1175/mwr-d-17-0103.1
[19]  Warner, J.L., Petch, J., Short, C.J. and Bain, C. (2023) Assessing the Impact of a NWP Warm‐Start System on Model Spin‐Up over Tropical Africa. Quarterly Journal of the Royal Meteorological Society, 149, 621-636.
https://doi.org/10.1002/qj.4429
[20]  李佳, 陈葆德, 黄伟, 张旭. 云物理初始化对一次强对流天气数值预报的影响研究[J]. 热带气象学报, 2018, 34(2): 198-208.
[21]  Chu, Q., Xu, Z., Chen, Y. and Han, D. (2018) Evaluation of the Ability of the Weather Research and Forecasting Model to Reproduce a Sub-Daily Extreme Rainfall Event in Beijing, China Using Different Domain Configurations and Spin-Up Times. Hydrology and Earth System Sciences, 22, 3391-3407.
https://doi.org/10.5194/hess-22-3391-2018
[22]  Ma, Z., Zhao, C., Gong, J., Zhang, J., Li, Z., Sun, J., et al. (2021) Spin-Up Characteristics with Three Types of Initial Fields and the Restart Effects on Forecast Accuracy in the GRAPES Global Forecast System. Geoscientific Model Development, 14, 205-221.
https://doi.org/10.5194/gmd-14-205-2021
[23]  Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020) The ERA5 Global Reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049.
https://doi.org/10.1002/qj.3803
[24]  Dee, D.P., Uppala, S.M., Simmons, A.J., Berrisford, P., Poli, P., Kobayashi, S., et al. (2011) The Era‐Interim Reanalysis: Configuration and Performance of the Data Assimilation System. Quarterly Journal of the Royal Meteorological Society, 137, 553-597.
https://doi.org/10.1002/qj.828
[25]  Belmonte Rivas, M. and Stoffelen, A. (2019) Characterizing ERA-Interim and ERA5 Surface Wind Biases Using ASCAT. Ocean Science, 15, 831-852.
https://doi.org/10.5194/os-15-831-2019

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133