全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

本氏烟NbGSLs基因家族鉴定与NbGSL2基因克隆
Genome-Wide Identification of the NbGSLs Gene Family and Cloning of NbGSL2 Gene in Nicotiana benthamiana

DOI: 10.12677/br.2025.143015, PP. 124-136

Keywords: 本氏烟,基因家族,胼胝质合酶,生物信息学分析
Nicotiana benthamiana
, Gene Family, Callose Synthase, Bioinformatics Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

胼胝质合酶(CalS),即葡聚糖合酶样蛋白(GSL),是调控植物胼胝质合成的关键酶,参与生长发育及逆境响应过程。本研究通过生物信息学方法系统鉴定了本氏烟NbGSLs基因家族,并对其染色体定位、蛋白理化特性、基因结构、保守结构域、系统发育关系、共线性及顺式作用元件进行全面分析。结果显示:1) 基因组中共鉴定12个NbGSLs成员,编码蛋白(1741~2136 aa)相对分子质量为202.72~243.90 kD,理论等电点8.31~9.23,均为碱性蛋白;2) 亚细胞定位预测显示,所有成员定位于胞间连丝;3) 基因结构分析表明,除NbGSL1外均含内含子,且普遍具有β-1,3-葡聚糖合酶和FKS1结构域;4) 共线性分析揭示家族内存在2个串联重复和6个片段重复事件,并与拟南芥AtGSLs家族形成3个共线性对;5) 启动子区含多种逆境响应元件,提示NbGSLs可能参与植物抗逆调控。基于表达预测筛选获得NbGSL2基因,成功克隆其5727 bp编码区,该基因编码1908个氨基酸,具有典型的跨膜结构和丰富的α-螺旋。本研究首次系统鉴定本氏烟NbGSLs基因家族并成功克隆NbGSL2,为解析其在韧皮部特异性表达及生物学功能奠定理论基础。
Callose Synthases (CalS), also known as Glucan Synthase-Like proteins (GSL), are pivotal enzymes regulating callose deposition during plant development and stress responses. This study systematically identified the NbGSLs gene family in Nicotiana benthamiana through bioinformatics approaches, with comprehensive analyses of chromosomal distribution, protein physicochemical properties, gene structure, conserved domains, phylogenetic relationships, collinearity, and cis-acting elements. Key findings include: 1) Twelve NbGSLs members were identified, encoding alkaline proteins (1741~2136 aa) with molecular weights of 202.72~243.90 kD and theoretical pI values of 8.31~9.23; 2) Subcellular localization predictions indicated plasmodesmata targeting for all members; 3) Structural analysis revealed intron-containing genes (except NbGSL1) harboring conserved β-1,3-glucan synthase and FKS1 domains; 4) Collinearity analysis identified 2 tandem and 6 segmental duplication events within the family, with 3 orthologous pairs detected between NbGSLs and Arabidopsis AtGSLs; 5) Promoter regions contained multiple stress-responsive elements, suggesting NbGSLs’ potential roles in abiotic stress adaptation. NbGSL2, predicted to exhibit phloem-specific expression, was successfully cloned with a 5727-bp coding sequence encoding a 1908-amino-acid transmembrane protein rich in α-helices. This study is the first one to systematically identify the NbGSLs gene family in N. benthamiana and successfully clone NbGSL2, which lays a theoretical foundation for analyzing its specific expression and biological function in the phloem.

References

[1]  Wang, B., Andargie, M. and Fang, R. (2022) The Function and Biosynthesis of Callose in High Plants. Heliyon, 8, e09248.
https://doi.org/10.1016/j.heliyon.2022.e09248
[2]  Shi, X., Han, X. and Lu, T. (2015) Callose Synthesis during Reproductive Development in Monocotyledonous and Dicotyledonous Plants. Plant Signaling & Behavior, 11, e1062196.
https://doi.org/10.1080/15592324.2015.1062196
[3]  Verma, D.P.S. and Hong, Z. (2001) Plant Callose Synthase Complexes. Plant Molecular Biology, 47, 693-701.
https://doi.org/10.1023/a:1013679111111
[4]  Feng, J., Chen, Y., Xiao, X., Qu, Y., Li, P., Lu, Q., et al. (2021) Genome-wide Analysis of the CalS Gene Family in Cotton Reveals Their Potential Roles in Fiber Development and Responses to Stress. Peer Journal, 9, e12557.
https://doi.org/10.7717/peerj.12557
[5]  Liu, F., Zou, Z. and Fernando, W.G.D. (2018) Characterization of Callose Deposition and Analysis of the Callose Synthase Gene Family of Brassica Napus in Response to Leptosphaeria Maculans. International Journal of Molecular Sciences, 19, Article 3769.
https://doi.org/10.3390/ijms19123769
[6]  Yu, Y., Jiao, L., Fu, S., Yin, L., Zhang, Y. and Lu, J. (2016) Callose Synthase Family Genes Involved in the Grapevine Defense Response to Downy Mildew Disease. Phytopathology, 106, 56-64.
https://doi.org/10.1094/phyto-07-15-0166-r
[7]  Yamaguchi, T., Hayashi, T., Nakayama, K. and Koike, S. (2006) Expression Analysis of Genes for Callose Synthases and Rho-Type Small GTP-Binding Proteins That Are Related to Callose Synthesis in Rice Anther. Bioscience, Biotechnology, and Biochemistry, 70, 639-645.
https://doi.org/10.1271/bbb.70.639
[8]  张庆雯, 王兆昊, 祁静静, 等. 植物胼胝质合成酶研究进展[J]. 园艺学报, 2021, 48(4): 661-675.
[9]  Barratt, D.H.P., Kölling, K., Graf, A., Pike, M., Calder, G., Findlay, K., et al. (2010) Callose Synthase GSL7 Is Necessary for Normal Phloem Transport and Inflorescence Growth in Arabidopsis. Plant Physiology, 155, 328-341.
https://doi.org/10.1104/pp.110.166330
[10]  Xie, B. and Hong, Z. (2011) Unplugging the Callose Plug from Sieve Pores. Plant Signaling & Behavior, 6, 491-493.
https://doi.org/10.4161/psb.6.4.14653
[11]  Luan, R., Liu, J., Tao, L., Fu, G. and Zhang, C. (2023) Comparative Transcriptome Analysis Reveals OsBGs and OsGSLs Influence Sugar Transport through Callose Metabolism under Heat Stress in Rice. International Journal of Molecular Sciences, 24, Article 3175.
https://doi.org/10.3390/ijms24043175
[12]  Somashekar, H., Mimura, M., Tsuda, K. and Nonomura, K. (2022) Rice GLUCAN SYNTHASE-LIKE5 Promotes Anther Callose Deposition to Maintain Meiosis Initiation and Progression. Plant Physiology, 191, 400-413.
https://doi.org/10.1093/plphys/kiac488
[13]  Zhang, J., Liu, N., Yan, A., Sun, T., Sun, X., Yao, G., et al. (2022) Callose Deposited at Soybean Sieve Element Inhibits Long-Distance Transport of Soybean Mosaic Virus. AMB Express, 12, Article No. 66.
https://doi.org/10.1186/s13568-022-01402-0
[14]  Granato, L.M., Galdeano, D.M., D’Alessandre, N.D.R., Breton, M.C. and Machado, M.A. (2019) Callose Synthase Family Genes Plays an Important Role in the Citrus Defense Response to Candidatus Liberibacter Asiaticus. European Journal of Plant Pathology, 155, 25-38.
https://doi.org/10.1007/s10658-019-01747-6
[15]  Goodin, M.M., Zaitlin, D., Naidu, R.A. and Lommel, S.A. (2008) Nicotiana benthamiana: Its History and Future as a Model for Plant-Pathogen Interactions. Molecular Plant-Microbe Interactions, 21, 1015-1026.
https://doi.org/10.1094/mpmi-21-8-1015
[16]  Bombarely, A., Rosli, H.G., Vrebalov, J., Moffett, P., Mueller, L.A. and Martin, G.B. (2012) A Draft Genome Sequence of Nicotiana benthamiana to Enhance Molecular Plant-Microbe Biology Research. Molecular Plant-Microbe Interactions, 25, 1523-1530.
https://doi.org/10.1094/mpmi-06-12-0148-ta
[17]  杨学飞, 刘亚娟, 高原, 等. CRISPR/Cas9系统在本氏烟草基因敲除中的应用[J]. 分子植物育种, 2017, 15(1): 30-38.
[18]  Xie, B., Wang, X., Zhu, M., Zhang, Z. and Hong, Z. (2010) CalS7 Encodes a Callose Synthase Responsible for Callose Deposition in the Phloem. The Plant Journal, 65, 1-14.
https://doi.org/10.1111/j.1365-313x.2010.04399.x
[19]  Yang, M., Derbyshire, M.K., Yamashita, R.A. and Marchler-Bauer, A. (2019) NCBI’s Conserved Domain Database and Tools for Protein Domain Analysis. Current Protocols in Bioinformatics, 69, 1-25.
https://doi.org/10.1002/cpbi.90
[20]  Duvaud, S., Gabella, C., Lisacek, F., Stockinger, H., Ioannidis, V. and Durinx, C. (2021) Expasy, the Swiss Bioinformatics Resource Portal, as Designed by Its Users. Nucleic Acids Research, 49, W216-W227.
https://doi.org/10.1093/nar/gkab225
[21]  Horton, P., Park, K., Obayashi, T., Fujita, N., Harada, H., Adams-Collier, C.J., et al. (2007) WoLF PSORT: Protein Localization Predictor. Nucleic Acids Research, 35, W585-W587.
https://doi.org/10.1093/nar/gkm259
[22]  Chen, C., Wu, Y., Li, J., Wang, X., Zeng, Z., Xu, J., et al. (2023) TBtools-II: A “One for All, All for One” Bioinformatics Platform for Biological Big-Data Mining. Molecular Plant, 16, 1733-1742.
https://doi.org/10.1016/j.molp.2023.09.010
[23]  Kumar, S., Stecher, G. and Tamura, K. (2016) MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33, 1870-1874.
https://doi.org/10.1093/molbev/msw054
[24]  Lescot, M. (2002) Plantcare, a Database of Plant Cis-Acting Regulatory Elements and a Portal to Tools for in Silico Analysis of Promoter Sequences. Nucleic Acids Research, 30, 325-327.
https://doi.org/10.1093/nar/30.1.325
[25]  Geourjon, C. and Deléage, G. (1995) SOPMA: Significant Improvements in Protein Secondary Structure Prediction by Consensus Prediction from Multiple Alignments. Bioinformatics, 11, 681-684.
https://doi.org/10.1093/bioinformatics/11.6.681
[26]  Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., et al. (2018) SWISS-MODEL: Homology Modelling of Protein Structures and Complexes. Nucleic Acids Research, 46, W296-W303.
https://doi.org/10.1093/nar/gky427
[27]  谢在春, 潘秋辉, 于永春, 等. 真核蛋白编码基因核心启动子元件[J]. 医学分子生物学杂志, 2007, 4(2): 132-135.
[28]  Yang, Y., Ahammed, G., Wu, C., Fan, S. and Zhou, Y. (2015) Crosstalk among Jasmonate, Salicylate and Ethylene Signaling Pathways in Plant Disease and Immune Responses. Current Protein & Peptide Science, 16, 450-461.
https://doi.org/10.2174/1389203716666150330141638
[29]  Schneider, R., Hanak, T., Persson, S. and Voigt, C.A. (2016) Cellulose and Callose Synthesis and Organization in Focus, What’s New? Current Opinion in Plant Biology, 34, 9-16.
https://doi.org/10.1016/j.pbi.2016.07.007
[30]  Verkman, A.S. and Mitra, A.K. (2000) Structure and Function of Aquaporin Water Channels. American Journal of Physiology-Renal Physiology, 278, F13-F28.
https://doi.org/10.1152/ajprenal.2000.278.1.f13

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133