Mangrove ecosystems are important for global carbon sequestration, with their soils storing approximately 1.71 ± 0.17 Mg C ha?1 yr?1 of organic carbon. However, these ecosystems face challenge of degradation at a rate of nearly 42% as observed in the past decade in India. Moreover, degraded mangroves have become an integral part of the wetland ecosystems in Sundarbans. In this study, we investigate the geochemical interactions influencing soil carbon sequestration potential in degraded mangrove soils of the Indian Sundarbans. Soil samples were collected from three major estuaries: Bidyadhari, Hooghly and Matla up to 5 metre depths (at 1 m interval) with replications. Samples were analysed for total carbon (TC), soil organic carbon (SOC), major oxide compositions, trace element concentrations, and clay minerals. TC (0.67 - 0.94%) and SOC (0.58 - 0.73%) showed highest concentrations at 0 - 1 m soil depth due to greater organic inputs and declined with depth across all sites. Silicon dioxide (46% - 51%) and aluminium oxide (18% - 23%) were observed in higher concentrations across all sites which may contribute to clay-humus complexes with the potential to stabilize organic carbon. Trace elements showed stratified distributions influenced by redox cycling, tidal inputs, and anthropogenic inputs, particularly in Hooghly and Bidyadhari estuaries. Presence of Chromium (Cr), manganese (Mn) and zinc (Zn) indicated the potential to form insoluble oxides and hydroxides that could act as adsorption sites for organic carbon, thereby enhancing its stability. Secondary clay minerals like glauconite and argentopyrite indicated stable soil matrices that further supported carbon stabilization. This study emphasizes the geochemical characteristics of Sundarban degraded mangrove system in relation to carbon sequestration potential and factors influencing the soil carbon dynamics.
References
[1]
Akhand, A., Liu, H., Ghosh, A., Chanda, A., Dasgupta, R., Mishrra, S. et al. (2024). Application of Structural Equation Modelling to Study Complex “Blue Carbon” Cycling in Mangrove Ecosystems. Marine Pollution Bulletin, 209, Article 117290. https://doi.org/10.1016/j.marpolbul.2024.117290
[2]
Al Mahmud, J., Siraz, M. M. M., Alam, M. S., Dewan, M. J., Rashid, M. B., Khandaker, M. U. et al. (2024). A Pioneering Study of the Radiological Mapping in the World’s Largest Mangrove Forest (The Sundarbans) and Implications for the Public and Environment. Marine Pollution Bulletin, 202, Article 116349. https://doi.org/10.1016/j.marpolbul.2024.116349
[3]
Alongi, D. M. (2012). Carbon Sequestration in Mangrove Forests. Carbon Management, 3, 313-322. https://doi.org/10.4155/cmt.12.20
[4]
Badawy, W. M., Dmitriev, A. Y., El Samman, H., El-Taher, A., Blokhin, M. G., Rammah, Y. S. et al. (2024). Elemental Composition and Metal Pollution in Egyptian Red Sea Mangrove Sediments: Characterization and Origin. Marine Pollution Bulletin, 198, Article 115830. https://doi.org/10.1016/j.marpolbul.2023.115830
[5]
Bhattacharyya, P., Padhy, S. R., Khanam, R., Nayak, A. K., Dash, P. K., Reddy, C. S. et al. (2023). Marine Estuaries Act as Better Sink for Greenhouse Gases during Winter in Undisturbed Mangrove than Degraded Ones in Sundarban, India. Marine Environmental Research, 191, Article 106147. https://doi.org/10.1016/j.marenvres.2023.106147
[6]
Cai, C., Anton, A., Duarte, C. M., & Agusti, S. (2024). Spatial Variations of Nutrient and Trace Metal Concentrations in Macroalgae across Blue Carbon Habitats of the Saudi Arabian Red Sea. Science of The Total Environment, 956, Article 177197. https://doi.org/10.1016/j.scitotenv.2024.177197
[7]
Chakraborty, D. (2024). Mangroves as an Effective Tool of Phytoremediation and Its Implications on Agricultural Land in Estuarine Zones. In N. K. Singh, S. Afzal, & T. Aftab (Eds.), Phytoremediation and Biofortification (pp. 131-146). Apple Academic Press. https://doi.org/10.1201/9781003402084-6
[8]
Chen, Z. L., Zhang, Z., Cai, R., Yi, Y., Liang, W., Macreadie, P. I. et al. (2025). Molecular Fingerprints of Sedimentary Dissolved Organic Matter in Mangroves: Importance to Blue Carbon Sequestration. Chemical Geology, 671, Article 122495. https://doi.org/10.1016/j.chemgeo.2024.122495
[9]
Cheng, Q., Jiang, H., Jin, Z., Jiang, Y., Hui, C., Xu, L. et al. (2021). Effects of Fe2O3 Nanoparticles on Extracellular Polymeric Substances and Nonylphenol Degradation in River Sediment. Science of The Total Environment, 770, Article 145210. https://doi.org/10.1016/j.scitotenv.2021.145210
[10]
Choudhary, B., Dhar, V., & Pawase, A. S. (2024). Blue Carbon and the Role of Mangroves in Carbon Sequestration: Its Mechanisms, Estimation, Human Impacts and Conservation Strategies for Economic Incentives. Journal of Sea Research, 199, Article 102504. https://doi.org/10.1016/j.seares.2024.102504
[11]
Choudhury, T. R., Khanolkar, S., & Banerjee, S. (2022). Glauconite Authigenesis during the Warm Climatic Events of Paleogene: Case Studies from Shallow Marine Sections of Western India. Global and Planetary Change, 214, Article 103857. https://doi.org/10.1016/j.gloplacha.2022.103857
[12]
Cooray, I. G., Chalmers, G., & Chittleborough, D. (2024). The Impact of Sampling Depths on Quantification of Soil Organic Carbon Stock in Mangrove Environments. CATENA, 246, Article 108398. https://doi.org/10.1016/j.catena.2024.108398
[13]
Das, A., Purakayastha, T. J., Ahmed, N., Das, R., Biswas, S., Shivay, Y. S. et al. (2023). Influence of Clay Mineralogy on Soil Organic Carbon Stabilization under Tropical Climate, India. Journal of Soil Science and Plant Nutrition, 23, 1003-1018. https://doi.org/10.1007/s42729-022-01099-x
[14]
Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., Stidham, M., & Kanninen, M. (2011). Mangroves among the Most Carbon-Rich Forests in the Tropics. Nature Geoscience, 4, 293-297. https://doi.org/10.1038/ngeo1123
[15]
El Rasafi, T., El Moukhtari, A., Farissi, M., Ziouti, A., Prasad, M. N. V., Oukarroum, A. et al. (2024). Soil Amendments as Promising Strategies for Phytomanagement of Cd Contaminated Soils. In A. Husen, M. Iqbal, A. Ditta, S. Mehmood, M. Imtiaz, & M. S. Tu (Eds.), Bio-Organic Amendments for Heavy Metal Remediation (pp. 499-513). Elsevier. https://doi.org/10.1016/b978-0-443-21610-7.00041-0
[16]
Ferreira, T. O., Queiroz, H. M., Nóbrega, G. N., de Souza Júnior, V. S., Barcellos, D., Ferreira, A. D. et al. (2022). Litho-Climatic Characteristics and Its Control over Mangrove Soil Geochemistry: A Macro-Scale Approach. Science of The Total Environment, 811, Article 152152. https://doi.org/10.1016/j.scitotenv.2021.152152
[17]
Frates, E. S., Spietz, R. L., Silverstein, M. R., Girguis, P., Hatzenpichler, R., & Marlow, J. J. (2023). Natural and Anthropogenic Carbon Input Affect Microbial Activity in Salt Marsh Sediment. Frontiers in Microbiology, 14, Article 1235906. https://doi.org/10.3389/fmicb.2023.1235906
[18]
Fu, C., Li, Y., Tu, C., Hu, J., Zeng, L., Qian, L. et al. (2023). Dynamics of Trace Element Enrichment in Blue Carbon Ecosystems in Relation to Anthropogenic Activities. Environment International, 180, Article 108232. https://doi.org/10.1016/j.envint.2023.108232
[19]
Ghosh, A., Baidya, S., & Gupta, A. K. (2024). Climate Change Impact on Landuse and Livelihood in Sundarbans: A Case Study of Sagar Island. In A. K. Gupta, A. Gupta, & P. Acharya (Eds.), Disaster Resilience and Green Growth (pp. 403-434). Springer Nature. https://doi.org/10.1007/978-981-99-4105-6_20
[20]
Grey, A., Costeira, R., Lorenzo, E., O’Kane, S., McCaul, M. V., McCarthy, T. et al. (2023). Geochemical Properties of Blue Carbon Sediments through an Elevation Gradient: Study of an Anthropogenically Impacted Coastal Lagoon. Biogeochemistry, 162, 381-408. https://doi.org/10.1007/s10533-022-00974-0
[21]
Guo, Z., Liu, J., Zeng, H., Xiao, X., Liu, M., Hong, H. et al. (2023). Variation of Glomalin-Metal Binding Capacity in 1 M Soil Profiles from Mangrove Forests to Mudflat and Affected Factor Analysis. Science of The Total Environment, 863, Article 160890. https://doi.org/10.1016/j.scitotenv.2022.160890
[22]
Hamid, Y., Tang, L., Hussain, B., Usman, M., Liu, L., Ulhassan, Z. et al. (2021). Sepiolite Clay: A Review of Its Applications to Immobilize Toxic Metals in Contaminated Soils and Its Implications in Soil-Plant System. Environmental Technology & Innovation, 23, Article 101598. https://doi.org/10.1016/j.eti.2021.101598
[23]
Hicks Pries, C. E., Ryals, R., Zhu, B., Min, K., Cooper, A., Goldsmith, S. et al. (2023). The Deep Soil Organic Carbon Response to Global Change. Annual Review of Ecology, Evolution, and Systematics, 54, 375-401. https://doi.org/10.1146/annurev-ecolsys-102320-085332
[24]
Islam, M. M., Akther, S. M., Hossain, M. F., & Parveen, Z. (2022). Spatial Distribution and Ecological Risk Assessment of Potentially Toxic Metals in the Sundarbans Mangrove Soils of Bangladesh. Scientific Reports, 12, Article No. 10422. https://doi.org/10.1038/s41598-022-13609-z
[25]
Islam, M. M., Akther, S. M., Wahiduzzaman, M., Hossain, M. F., & Parveen, Z. (2023). Fractionation and Contamination Assessment of Zn, Cu, Fe, and Mn in the Sundarbans Mangrove Soils of Bangladesh. Soil and Sediment Contamination: An International Journal, 32, 789-811. https://doi.org/10.1080/15320383.2022.2142513
[26]
Kauffman, J. B., Adame, M. F., Arifanti, V. B., Schile‐Beers, L. M., Bernardino, A. F., Bhomia, R. K. et al. (2020). Total Ecosystem Carbon Stocks of Mangroves across Broad Global Environmental and Physical Gradients. Ecological Monographs, 90, e01405. https://doi.org/10.1002/ecm.1405
[27]
Li, Q., Hu, W., Li, L., & Li, Y. (2023). Interactions between Organic Matter and Fe Oxides at Soil Micro-Interfaces: Quantification, Associations, and Influencing Factors. Science of The Total Environment, 855, Article 158710. https://doi.org/10.1016/j.scitotenv.2022.158710
[28]
Madi, A. P. L. M., Boeger, M. R. T., & Reissmann, C. B. (2015). Distribution of Cu, Fe, Mn, and Zn in Two Mangroves of Southern Brazil. Brazilian Archives of Biology and Technology, 58, 970-976. https://doi.org/10.1590/s1516-89132015060255
[29]
Mapanao-Villar, K., Abella, G. P., Pakaigue-Valera, M., Villen, J. W., & Ponce, C. D. (2024). Mangroves and Their Associates in Metal-Rich Soils in Candelaria, Zambales Province, Philippines. Journal of Environmental Science and Management, 27, 80-89. https://doi.org/10.47125/jesam/2024_1/07
[30]
Marchand, C. (2017). Soil Carbon Stocks and Burial Rates along a Mangrove Forest Chronosequence (French Guiana). Forest Ecology and Management, 384, 92-99. https://doi.org/10.1016/j.foreco.2016.10.030
[31]
Murugesan, A., Loganathan, M., Senthil Kumar, P., & Vo, D. N. (2021). Cobalt and Nickel Oxides Supported Activated Carbon as an Effective Photocatalysts for the Degradation Methylene Blue Dye from Aquatic Environment. Sustainable Chemistry and Pharmacy, 21, Article 100406. https://doi.org/10.1016/j.scp.2021.100406
[32]
Nayak, S. K., Bhattacharyya, P., Padhy, S. R., Das, A., & Parida, S. P. (2024). Spatial Variation of Algal Diversity Due to Conversion of Mangrove to Rice Ecology in Sundarban, India. Biodiversity and Conservation, 34, 191-206. https://doi.org/10.1007/s10531-024-02965-z
[33]
Padhy, S. R., Bhattacharyya, P., Dash, P. K., Nayak, S. K., Das, A., Parida, S. P. et al. (2023). Comparative Accounting of Methane and Nitrous Oxide Fluxes with Related Soil Parameters of Degraded Mangrove Wetlands and Adjacent Rice Fields in Sundarban, India. Atmospheric Pollution Research, 14, Article 101749. https://doi.org/10.1016/j.apr.2023.101749
[34]
Padhy, S. R., Bhattacharyya, P., Dash, P. K., Nayak, S. K., Parida, S. P., Baig, M. J. et al. (2022). Elucidation of Dominant Energy Metabolic Pathways of Methane, Sulphur and Nitrogen in Respect to Mangrove-Degradation for Climate Change Mitigation. Journal of Environmental Management, 303, Article 114151. https://doi.org/10.1016/j.jenvman.2021.114151
[35]
Padhy, S. R., Bhattacharyya, P., Dash, P. K., Reddy, C. S., Chakraborty, A., & Pathak, H. (2020). Seasonal Fluctuation in Three Mode of Greenhouse Gases Emission in Relation to Soil Labile Carbon Pools in Degraded Mangrove, Sundarban, India. Science of The Total Environment, 705, Article 135909. https://doi.org/10.1016/j.scitotenv.2019.135909
[36]
Padhy, S. R., Bhattacharyya, P., Nayak, S. K., Dash, P. K., & Mohapatra, T. (2021). A Unique Bacterial and Archaeal Diversity Make Mangrove a Green Production System Compared to Rice in Wetland Ecology: A Metagenomic Approach. Science of The Total Environment, 781, Article 146713. https://doi.org/10.1016/j.scitotenv.2021.146713
[37]
Pavoni, E., Crosera, M., Petranich, E., Faganeli, J., Klun, K., Oliveri, P. et al. (2021). Distribution, Mobility and Fate of Trace Elements in an Estuarine System under Anthropogenic Pressure: The Case of the Karstic Timavo River (Northern Adriatic Sea, Italy). Estuaries and Coasts, 44, 1831-1847. https://doi.org/10.1007/s12237-021-00910-9
[38]
Qin, G., Lu, Z., Gan, S., Zhang, L., Zhang, J., Zhou, J. et al. (2024). Fate of Soil Organic Carbon in Estuarine Mangroves: Evidences from Stable Isotopes and Lignin Biomarkers. CATENA, 246, Article 108401. https://doi.org/10.1016/j.catena.2024.108401
[39]
Queiroz, H. M., Ferreira, T. O., Fandiño, V. A., Bragantini, I. O. B. F., Barcellos, D., Nóbrega, G. N. et al. (2022). Changes in Soil Iron Biogeochemistry in Response to Mangrove Dieback. Biogeochemistry, 158, 357-372. https://doi.org/10.1007/s10533-022-00903-1
[40]
Ragavan, P., Rahman, A., Sarkar, S., Verma, S., Jeeva, C., Mohan, P. M. et al. (2023). Variability in Soil Organic Carbon Stock and Isotopic Signature in Tropical Island Mangrove Forests of India. Regional Environmental Change, 23, Article No. 135. https://doi.org/10.1007/s10113-023-02130-2
[41]
Rahman, S. U., Han, J., Zhou, Y., Ahmad, M., Li, B., Wang, Y. et al. (2024). Adaptation and Remediation Strategies of Mangroves against Heavy Metal Contamination in Global Coastal Ecosystems: A Review. Journal of Cleaner Production, 441, Article 140868. https://doi.org/10.1016/j.jclepro.2024.140868
[42]
Ray, A., Kumar, M., Karim, A. A., Biswas, K., & Sarkar, B. (2023). Chromium Contamination in Soil from Mining Activities: A Constraint for Crop Production and Potential Mitigation Strategies. In N. Bolan, & M. B. Kirkham (Eds.), Soil Constraints and Productivity (pp. 83-99). CRC Press. https://doi.org/10.1201/9781003093565-5
[43]
Ray, R., Chowdhury, C., Majumder, N., Dutta, M. K., Mukhopadhyay, S. K., & Jana, T. K. (2013). Improved Model Calculation of Atmospheric CO2 Increment in Affecting Carbon Stock of Tropical Mangrove Forest. Tellus B: Chemical and Physical Meteorology, 65, Article 18981. https://doi.org/10.3402/tellusb.v65i0.18981
[44]
Ray, R., Mandal, S. K., González, A. G., Pokrovsky, O. S., & Jana, T. K. (2021). Storage and Recycling of Major and Trace Element in Mangroves. Science of The Total Environment, 780, Article 146379. https://doi.org/10.1016/j.scitotenv.2021.146379
[45]
Robin, S. L., Baudin, F., Le Milbeau, C., & Marchand, C. (2024). Millennial-Aged Organic Matter Preservation in Anoxic and Sulfidic Mangrove Soils: Insights from Isotopic and Molecular Analyses. Estuarine, Coastal and Shelf Science, 308, Article 108936. https://doi.org/10.1016/j.ecss.2024.108936
[46]
Romero-Mujalli, G., & Melendez, W. (2023). Nutrients and Trace Elements of Semi-Arid Dwarf and Fully Developed Mangrove Soils, Northwestern Venezuela. Environmental Earth Sciences, 82, Article No. 51. https://doi.org/10.1007/s12665-022-10701-5
[47]
Rovai, A. S., Twilley, R. R., Castañeda-Moya, E., Riul, P., Cifuentes-Jara, M., Manrow-Villalobos, M. et al. (2018). Global Controls on Carbon Storage in Mangrove Soils. Nature Climate Change, 8, 534-538. https://doi.org/10.1038/s41558-018-0162-5
[48]
Royna, M., Murdiyarso, D., Sasmito, S. D., Arriyadi, D., Rahajoe, J. S., Zahro, M. G. et al. (2024). Carbon Stocks and Effluxes in Mangroves Converted into Aquaculture: A Case Study from Banten Province, Indonesia. Frontiers in Ecology and Evolution, 12, Article 1340531. https://doi.org/10.3389/fevo.2024.1340531
[49]
Ruiz, F., Bernardino, A. F., Queiroz, H. M., Otero, X. L., Rumpel, C., & Ferreira, T. O. (2024). Iron’s Role in Soil Organic Carbon (de)Stabilization in Mangroves under Land Use Change. Nature Communications, 15, Article No. 10433. https://doi.org/10.1038/s41467-024-54447-z
[50]
Selvaraj, V., Pandu, P., Saradhambal, S. R., Sankarappan, R., & Anandarao, R. (2024). An Appraisal of Trace Element Concentration and Environmental Risk of Sediments: A Baseline Study of Sediments from Arasalar River Estuary, Tamil Nadu, India. Environmental Science and Pollution Research, 31, 41446-41461. https://doi.org/10.1007/s11356-023-28552-3
[51]
Sharma, D., Rao, K., & Ramanathan, A. (2021). A Systematic Review on the Impact of Urbanization and Industrialization on Indian Coastal Mangrove Ecosystem. In S. Madhav, S. Nazneen, & P. Singh (Eds.), Coastal Research Library (pp. 175-199). Springer International Publishing. https://doi.org/10.1007/978-3-030-84255-0_8
[52]
Sierra, C. A., Ahrens, B., Bolinder, M. A., Braakhekke, M. C., von Fromm, S., Kätterer, T. et al. (2024). Carbon Sequestration in the Subsoil and the Time Required to Stabilize Carbon for Climate Change Mitigation. Global Change Biology, 30, e17153. https://doi.org/10.1111/gcb.17153
[53]
Spalding, M. (2010). World Atlas of Mangroves. Routledge.
[54]
Tang, D., Luo, S., Deng, S., Huang, R., Chen, B., & Deng, Z. (2022). Heavy Metal Pollution Status and Deposition History of Mangrove Sediments in Zhanjiang Bay, China. Frontiers in Marine Science, 9, Article 989584. https://doi.org/10.3389/fmars.2022.989584
[55]
Tognella, M. M. P., Soares, M. L. G., Cuevas, E., & Medina, E. (2016). Heterogeneity of Elemental Composition and Natural Abundance of Stables Isotopes of C and N in Soils and Leaves of Mangroves at Their Southernmost West Atlantic Range. Brazilian Journal of Biology, 76, 994-1003. https://doi.org/10.1590/1519-6984.05915
[56]
Wang, Q., Wen, Y., Zhao, B., Hong, H., Liao, R., Li, J. et al. (2021). Coastal Soil Texture Controls Soil Organic Carbon Distribution and Storage of Mangroves in China. CATENA, 207, Article 105709. https://doi.org/10.1016/j.catena.2021.105709
[57]
Wang, W., Chen, C., Huang, X., Jiang, S., Xiong, J., Li, J. et al. (2024a). Chromium(VI) Adsorption and Reduction in Soils under Anoxic Conditions: The Relative Roles of Iron (Oxyhr)Oxides, Iron(II), Organic Matters, and Microbes. Environmental Science & Technology, 58, 18391-18403. https://doi.org/10.1021/acs.est.4c08677
[58]
Wang, X., Wang, C., Fan, X., Sun, L., Sang, C., Wang, X. et al. (2024b). Mineral Composition Controls the Stabilization of Microbially Derived Carbon and Nitrogen in Soils: Insights from an Isotope Tracing Model. Global Change Biology, 30, e17156. https://doi.org/10.1111/gcb.17156
[59]
Wu, S., Li, H., Yuan, B., Chen, X., He, L., Li, Q. et al. (2024). Regulation of Precipitation on Soil Dissolved Organic Matter in Perturbed Mangrove Ecosystems. Ecosystem Health and Sustainability, 10, Article ID: 0156. https://doi.org/10.34133/ehs.0156