全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

热带岛屿地区不同云微物理方案对强降水模拟性能研究——以海南岛为例
Study on the Performance of Different Cloud Microphysics Schemes in Simulating Heavy Precipitation over Tropical Islands—A Case Study of Hainan Island

DOI: 10.12677/ccrl.2025.143039, PP. 384-398

Keywords: 敏感性分析,ERA5再分析数据,CMPAS数据融合,预报偏差,时空分布,模型分辨率
Sensitivity Analysis
, ERA5 Reanalysis Data, CMPAS Data Merging, Forecast Bias, Spatiotemporal Distribution, Model Resolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

在全球气候变暖加剧极端降水的背景下,热带岛屿地区的精准降水预报对防灾减灾和可持续发展具有关键意义。海南岛作为典型热带季风区,其强降水过程受多重天气系统影响,但现有研究多聚焦于中高纬度地区,针对热带岛屿云微物理机制的认知仍存在显著缺口。本研究基于WRF V4.2模式,选取12类典型强降水事件(含台风、季风和对流系统),系统评估Kessler、Lin、WSM3/5/6、Ferrier和Thompson共7种云微物理方案在海南岛的适用性,结合地面观测、CMPAS融合降水产品和GSMaP遥感数据,通过相关系数(R)、均方根误差(RMSE)和Kling-Gupta效率系数(KGE)等多维度指标验证模拟性能。研究发现:(1) 方案表现呈现显著时空分异性,Ferrier方案在秋季降水模拟中相关系数最高(R = 0.77),而Thompson方案在误差控制(RMSE = 1.67 mm/h)和台风降水峰值捕捉(20 mm/h)方面最优;(2) Thompson (MP8)和WSM6方案(MP6)在降水过程模拟中展现出较高的综合可靠性;(3) 简单暖云方案Kessler在3月季风转换前期(R = 0.53)和9月残余台风降水(R = 0.63)中表现突出,揭示了热带降水暖云主导机制与复杂冰相参数化的适应性矛盾;(4) 提出季节–天气型动态方案配置策略:季风转换前期(3~4月)采用Kessler方案(MP1),主汛期(5~9月)优选Thompson方案(MP8),台风中后期(10~11月)切换至WSM3方案(MP3)。
In the context of global warming exacerbating extreme precipitation, accurate precipitation forecasting in tropical island regions is crucial for disaster prevention, mitigation, and sustainable development. As a representative tropical monsoon region, Hainan Island experiences heavy precipitation influenced by multiple weather systems. However, existing studies predominantly focus on mid- and high-latitude regions, leaving significant gaps in the understanding of cloud microphysical mechanisms over tropical islands. This study employs the WRF V4.2 model to evaluate the applicability of seven cloud microphysics schemes—Kessler, Lin, WSM3/5/6, Ferrier, and Thompson—by selecting 12 typical heavy precipitation events, including typhoons, monsoons, and convective systems. Using ground-based observations, the CMPAS merged precipitation product, and GSMaP satellite data, the simulation performance is validated through multiple metrics, including correlation coefficient (R), root mean square error (RMSE), and Kling-Gupta efficiency (KGE). The key findings are as follows: (1) The performance of the schemes exhibits significant spatiotemporal variations. The Ferrier scheme achieves the highest correlation coefficient in autumn precipitation simulations (R = 0.77), while the Thompson scheme excels in error control (RMSE = 1.67 mm/h) and capturing typhoon precipitation peaks (20 mm/h); (2) The Thompson (MP8) and WSM6 (MP6) schemes demonstrate strong overall reliability in simulating rainfall processes; (3) The simple warm-rain Kessler scheme performs particularly well during the pre-monsoon transition in March (R = 0.53) and residual typhoon rainfall in September (R = 0.63), revealing a mismatch between warm-cloud-dominated tropical rainfall and overly complex ice-phase

References

[1]  Kessler, E. (1969) On the Distribution and Continuity of Water Substance in Atmospheric Circulations. In: Kessler, E., Ed., On the Distribution and Continuity of Water Substance in Atmospheric Circulations, American Meteorological Society, 1-84.
https://doi.org/10.1007/978
-1-935704-36-2_1
[2]  Lin, Y., Farley, R.D. and Orville, H.D. (1983) Bulk Parameterization of the Snow Field in a Cloud Model. Journal of Climate and Applied Meteorology, 22, 1065-1092.
https://doi.org/10.1175/1520
-0450(1983)022<1065:bpotsf>2.0.co;2
[3]  Hong, S.Y. and Lim, J.O.J. (2006) WRF Single-Moment 6-Class Microphysics Scheme (WSM6). Monthly Weather Review, 42, 129-151.
[4]  Hong, S., Dudhia, J. and Chen, S. (2004) A Revised Approach to Ice Microphysical Processes for the Bulk Parameterization of Clouds and Precipitation. Monthly Weather Review, 132, 103-120.
https://doi.org/10.1175/1520
-0493(2004)132<0103:aratim>2.0.co;2
[5]  Morrison, H., Curry, J.A. and Khvorostyanov, V.I. (2005) A New Double-Moment Microphysics Parameterization for Application in Cloud and Climate Models. Part I: Description. Journal of the Atmospheric Sciences, 62, 1665-1677.
https://doi.org/10.1175/jas3446.1

[6]  Morrison, H., Thompson, G. and Tatarskii, V. (2009) Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One-and Two-Moment Schemes. Monthly Weather Review, 137, 991-1007.
https://doi.org/10.1175/2008mwr2556.1

[7]  Hong, S., Lim, K.S., Lee, Y., Ha, J., Kim, H., Ham, S., et al. (2010) Evaluation of the WRF Double‐Moment 6‐Class Microphysics Scheme for Precipitating Convection. Advances in Meteorology, 2010, Article ID: 707253.
https://doi.org/10.1155/2010/707253

[8]  Thompson, G., Rasmussen, R.M. and Manning, K. (2004) Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part I: Description and Sensitivity Analysis. Monthly Weather Review, 132, 519-542.
https://doi.org/10.1175/1520
-0493(2004)132<0519:efowpu>2.0.co;2
[9]  Thompson, G., Field, P.R., Rasmussen, R.M. and Hall, W.D. (2008) Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Monthly Weather Review, 136, 5095-5115.
https://doi.org/10.1175/2008mwr2387.1

[10]  Neale, R.B., Gettelman, A., Park, S., Chen, C.-C., Lauritzen, P.H., Williamson, D.L., et al. (2012) Description of the NCAR Community Atmosphere Model (CAM 5.0). Boulder, CO.
[11]  庞杨, 朱锐, 刘浩, 等. 不同云微物理方案对台风“安比”降雨模拟的影响[J]. 海洋科学进展, 2023, 41(1): 64-75.
[12]  徐之骁, 徐海明. 不同云微物理方案对“7.21”特大暴雨模拟的对比试验[J]. 气象科学, 2016, 36(1): 45-54.
[13]  康兆萍, 周志敏, 李红莉. 不同分辨率和云微物理方案对华中暴雨模拟的影响分析[J]. 暴雨灾害, 2019, 38(6): 658-667.
[14]  黄丹莲, 高士博, 闵锦忠. 不同云微物理方案对一次飑线过程模拟的影响[J]. 气象科学, 2017, 37(2): 173-183.
[15]  顾小祥, 李国平. 云微物理方案对一次高原切变线暴雨过程数值模拟的影响[J]. 云南大学学报(自然科学版), 2019, 41(3): 526-536.
[16]  艾凯, 郑益群, 曾新民, 等. WRF模式不同云微物理方案对华西秋雨模拟影响[J]. 气象与环境学报, 2016, 32(2): 1-10.
[17]  许广, 费建芳, 黄小刚, 等. 一次飑线过程的云微物理参数化方案数值试验及其成因分析[J]. 气象科学, 2017, 37(3): 283-292.
[18]  饶莉娟, 高山红, 张恺. WRF模式中不同边界层及云微物理方案对两次黄海海雾个例数值模拟的影响[J]. 气象科技进展, 2019, 9(6): 12-19.
[19]  王佳, 梅钦, 陈钰文. WRF模式不同微物理方案水凝物的预报能力检验与集成试验[J]. 气象, 2017, 43(5): 552-559.
[20]  于晓晶, 于志翔, 唐永兰, 等. 不同云微物理方案对新疆冷锋暴雪的预报影响分析[J]. 暴雨灾害, 2017, 36(1): 33-41.
[21]  Madhulatha, A., Dudhia, J., Park, R., Bhan, S.C. and Mohapatra, M. (2023) Effect of Single and Double Moment Microphysics Schemes and Change in Cloud Condensation Nuclei, Latent Heating Rate Structure Associated with Severe Convective System Over Korean Peninsula. Atmosphere, 14, Article 1680.
https://doi.org/10.3390/atmos14111680

[22]  Molthan, A.L. and Colle, B.A. (2012) Comparisons of Single-and Double-Moment Microphysics Schemes in the Simulation of a Synoptic-Scale Snowfall Event. Monthly Weather Review, 140, 2982-3002.
https://doi.org/10.1175/mwr
-d-11-00292.1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133