|
冠状动脉微血管疾病研究进展与挑战
|
Abstract:
冠状动脉微血管疾病(CMD)是心肌缺血的独立病因,其机制涉及内皮功能障碍、微血管痉挛、炎症及血管重构等多因素。临床表现为非阻塞性心绞痛,与心血管事件风险升高相关。诊断依赖侵入性功能指标(如CFR、IMR)与非侵入性影像(心脏磁共振、PET),但标准化不足。治疗以改善微循环为核心,传统药物包括硝酸酯类、尼可地尔(KATP通道开放剂)、雷诺嗪(钠通道抑制剂)及ACEI/ARB,新兴疗法如sGC激动剂和SGLT-2抑制剂展现潜力。目前证据多基于小样本研究,缺乏具体指南,且长期预后仍存在争议。未来需整合多组学、影像标志物与AI技术,建立精准诊疗体系,并通过大规模临床试验验证分层治疗策略。
Coronary microvascular disease (CMD) is an independent cause of myocardial ischemia, and its mechanism involves multiple factors such as endothelial dysfunction, microvascular spasm, inflammation and vascular remodeling. The clinical manifestation is non-obstructive angina, which is associated with an increased risk of cardiovascular events. Diagnosis relies on invasive functional indicators (such as CFR, IMR) and non-invasive imaging (cardiac magnetic resonance, PET), but the standardization is insufficient. The core treatment is to improve microcirculation. Traditional drugs include nitrates, nicorandil (KATP channel opener), ranolazine (sodium channel inhibitor) and ACEI/ARB. Emerging therapies such as sGC agonists and SGLT-2 inhibitors show potential. The current evidence is mostly based on small sample studies, lacks specific guidelines, and long-term prognosis is still controversial. In the future, it is necessary to integrate multi-omics, imaging markers and AI technology to establish a precise diagnosis and treatment system, and to verify the stratified treatment strategy through large-scale clinical trials.
[1] | Chen, C., Wei, J., AlBadri, A., Zarrini, P. and Bairey Merz, C.N. (2017) Coronary Microvascular Dysfunction—Epidemiology, Pathogenesis, Prognosis, Diagnosis, Risk Factors and Therapy. Circulation Journal, 81, 3-11. https://doi.org/10.1253/circj.cj-16-1002 |
[2] | Vancheri, F., Longo, G., Vancheri, S. and Henein, M. (2020) Coronary Microvascular Dysfunction. Journal of Clinical Medicine, 9, Article 2880. https://doi.org/10.3390/jcm9092880 |
[3] | Camici, P.G. and Crea, F. (2007) Coronary Microvascular Dysfunction. New England Journal of Medicine, 356, 830-840. https://doi.org/10.1056/nejmra061889 |
[4] | Lanza, G.A. and Crea, F. (2010) Primary Coronary Microvascular Dysfunction: Clinical Presentation, Pathophysiology, and Management. Circulation, 121, 2317-2325. https://doi.org/10.1161/circulationaha.109.900191 |
[5] | Del Buono, M.G., Montone, R.A., Camilli, M., Carbone, S., Narula, J., Lavie, C.J., et al. (2021) Coronary Microvascular Dysfunction across the Spectrum of Cardiovascular Diseases: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 78, 1352-1371. https://doi.org/10.1016/j.jacc.2021.07.042 |
[6] | Crea, F., Montone, R.A. and Rinaldi, R. (2022) Pathophysiology of Coronary Microvascular Dysfunction. Circulation Journal, 86, 1319-1328. https://doi.org/10.1253/circj.cj-21-0848 |
[7] | Kunadian, V., Harrigan, C., Zorkun, C., Palmer, A.M., Ogando, K.J., Biller, L.H., et al. (2008) Use of the TIMI Frame Count in the Assessment of Coronary Artery Blood Flow and Microvascular Function over the Past 15 Years. Journal of Thrombosis and Thrombolysis, 27, 316-328. https://doi.org/10.1007/s11239-008-0220-3 |
[8] | 李卫虹, 李昭屏, 徐伟仙, 等. 经胸多普勒超声心动图检测冠状动脉血流储备对高血压患者冠状动脉狭窄的预测价值[J]. 中国循环杂志, 2015, 30(10): 946-949. |
[9] | Camici, P.G. and Rimoldi, O.E. (2009) The Clinical Value of Myocardial Blood Flow Measurement. Journal of Nuclear Medicine, 50, 1076-1087. https://doi.org/10.2967/jnumed.108.054478 |
[10] | Dastidar, A.G., Baritussio, A., De Garate, E., Drobni, Z., Biglino, G., Singhal, P., et al. (2019) Prognostic Role of CMR and Conventional Risk Factors in Myocardial Infarction with Nonobstructed Coronary Arteries. JACC: Cardiovascular Imaging, 12, 1973-1982. https://doi.org/10.1016/j.jcmg.2018.12.023 |
[11] | Vancheri, F., Longo, G., Vancheri, S. and Henein, M. (2020) Coronary Microvascular Dysfunction. Journal of Clinical Medicine, 9, Article 2880. https://doi.org/10.3390/jcm9092880 |
[12] | Russo, I. and Frangogiannis, N.G. (2016) Diabetes-associated Cardiac Fibrosis: Cellular Effectors, Molecular Mechanisms and Therapeutic Opportunities. Journal of Molecular and Cellular Cardiology, 90, 84-93. https://doi.org/10.1016/j.yjmcc.2015.12.011 |
[13] | Feng, C., Abdu, F.A., Mohammed, A., Zhang, W., Liu, L., Yin, G., et al. (2022) Prognostic Impact of Coronary Microvascular Dysfunction Assessed by caiMR in Overweight with Chronic Coronary Syndrome Patients. Frontiers in Endocrinology, 13, Article 922264. https://doi.org/10.3389/fendo.2022.922264 |
[14] | Pittilo, M. (2000) Cigarette Smoking, Endothelial Injury and Cardiovascular Disease. International Journal of Experimental Pathology, 81, 219-230. https://doi.org/10.1046/j.1365-2613.2000.00162.x |
[15] | Padró, T., Vilahur, G. and Badimon, L. (2018) Dyslipidemias and Microcirculation. Current Pharmaceutical Design, 24, 2921-2926. https://doi.org/10.2174/1381612824666180702154129 |
[16] | Manfrini, O., Amaduzzi, P., Bergami, M. and Cenko, E. (2020) Effects of Statin Treatment on Patients with Angina and Normal or Nearly Normal Angiograms. European Cardiology Review, 15, e15. https://doi.org/10.15420/ecr.2019.15 |
[17] | Jadhav, S., Ferrell, W., Greer, I.A., Petrie, J.R., Cobbe, S.M. and Sattar, N. (2006) Effects of Metformin on Microvascular Function and Exercise Tolerance in Women with Angina and Normal Coronary Arteries: A Randomized, Double-Blind, Placebo-Controlled Study. Journal of the American College of Cardiology, 48, 956-963. https://doi.org/10.1016/j.jacc.2006.04.088 |
[18] | Monti, M., Terzuoli, E., Ziche, M. and Morbidelli, L. (2013) The Sulphydryl Containing ACE Inhibitor Zofenoprilat Protects Coronary Endothelium from Doxorubicin-Induced Apoptosis. Pharmacological Research, 76, 171-181. https://doi.org/10.1016/j.phrs.2013.08.003 |
[19] | Mangiacapra, F., Pellicano, M., Di Serafino, L., Bressi, E., Peace, A.J., Di Gioia, G., et al. (2018) Platelet Reactivity and Coronary Microvascular Impairment after Percutaneous Revascularization in Stable Patients Receiving Clopidogrel or Prasugrel. Atherosclerosis, 278, 23-28. https://doi.org/10.1016/j.atherosclerosis.2018.08.044 |
[20] | 李嘉仪, 贾晓静, 贾少杰, 等. 阿司匹林和氯吡格雷双重抗血小板治疗对急性缺血性脑卒中并发微出血患者出血转归及预后的影响[J]. 吉林大学学报(医学版), 2021, 47(6): 1531-1537. |
[21] | Sakellarios, A.I. and Fotiadis, D.I. (2019) Editorial Commentary: The Pleiotropic Effect of Statins on the Atherosclerotic Plaque and Coronary Heart Disease. Trends in Cardiovascular Medicine, 29, 456-457. https://doi.org/10.1016/j.tcm.2019.02.001 |
[22] | Bouabdallaoui, N., Tardif, J., Waters, D.D., Pinto, F.J., Maggioni, A.P., Diaz, R., et al. (2020) Time-to-Treatment Initiation of Colchicine and Cardiovascular Outcomes after Myocardial Infarction in the Colchicine Cardiovascular Outcomes Trial (COLCOT). European Heart Journal, 41, 4092-4099. https://doi.org/10.1093/eurheartj/ehaa659 |
[23] | Bairey Merz, C.N., Handberg, E.M., Shufelt, C.L., Mehta, P.K., Minissian, M.B., Wei, J., et al. (2015) A Randomized, Placebo-Controlled Trial of Late Na Current Inhibition (Ranolazine) in Coronary Microvascular Dysfunction (CMD): Impact on Angina and Myocardial Perfusion Reserve. European Heart Journal, 37, 1504-1513. https://doi.org/10.1093/eurheartj/ehv647 |