全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Projected Hydropower Capacity under Changing Climate Conditions and Its Implications in South and Southeast Asia

DOI: 10.4236/ajcc.2025.142012, PP. 230-247

Keywords: Climate Change, Hydropower, South Asia, Southeast Asia, Energy Infrastructure, Precipitation Patterns, Glacier Melt, Extreme Weather Events, Capacity Factors, Adaptation Measures, Resilience

Full-Text   Cite this paper   Add to My Lib

Abstract:

Hydropower is critical to South and Southeast Asia’s energy security, yet climate change threatens its sustainability through altered hydrological cycles. This study assesses the impacts of climate change on hydropower capacity factors across 12 countries (86% of regional installed capacity) from 2020 to 2100. Using an ensemble of 60 climate-hydrological models (5 GCMs, 4 GHMs, 3 RCPs), we evaluate shifts in precipitation, glacier melt, and extreme events on seasonal and annual hydropower performance. The objectives are to 1) quantify regional and sub-regional capacity factor trends, 2) identify drivers of variability, and 3) propose adaptive strategies for resilient energy systems. Results indicate a regional mean decline in hydropower capacity factors by 4.8% (2020-2059) and up to 5.4% (2060-2099) under high-emission scenarios. The Indian Subcontinent faces severe reductions (6.9% by 2100) due to drier winters and monsoon shifts, while Mainland Southeast Asia declines by 5.9%. Conversely, Himalayan regions (Nepal, Bhutan) show transient declines (?2.4% by 2059) followed by recovery post-2060 as glacial melt temporarily offsets precipitation deficits. Maritime Southeast Asia exhibits mixed trends, with capacity factors rebounding under high warming. To mitigate risks, we recommend integrating hydropower with floating solar photovoltaics, optimizing reservoir operations via AI-driven forecasting, and strengthening transboundary water-energy governance. These strategies can enhance grid resilience, offset seasonal variability, and support decarbonization goals. Policymakers must prioritize region-specific adaptations, particularly in climate-vulnerable zones like the Indian Subcontinent, to ensure energy security amid escalating hydrological uncertainties.

References

[1]  Ahmadianfar, I., Kheyrandish, A., Jamei, M., & Gharabaghi, B. (2021). Optimizing Operating Rules for Multi-Reservoir Hydropower Generation Systems: An Adaptive Hybrid Differential Evolution Algorithm. Renewable Energy, 167, 774-790.
https://doi.org/10.1016/j.renene.2020.11.152
[2]  Arango-Aramburo, S., Turner, S. W. D., Daenzer, K., Ríos-Ocampo, J. P., Hejazi, M. I., Kober, T. et al. (2019). Climate Impacts on Hydropower in Colombia: A Multi-Model Assessment of Power Sector Adaptation Pathways. Energy Policy, 128, 179-188.
https://doi.org/10.1016/j.enpol.2018.12.057
[3]  Arias, M. E., Cochrane, T. A., Kummu, M., Lauri, H., Holtgrieve, G. W., Koponen, J. et al. (2014). Impacts of Hydropower and Climate Change on Drivers of Ecological Productivity of Southeast Asia’s Most Important Wetland. Ecological Modelling, 272, 252-263.
https://doi.org/10.1016/j.ecolmodel.2013.10.015
[4]  Aryal, J. P., Sapkota, T. B., Khurana, R., Khatri-Chhetri, A., Rahut, D. B., & Jat, M. L. (2020). Climate Change and Agriculture in South Asia: Adaptation Options in Smallholder Production Systems. Environment, Development and Sustainability, 22, 5045-5075.
https://doi.org/10.1007/s10668-019-00414-4
[5]  Ashraf, S., Ijaz, M. W., & Khan, A. R. (2022). Climate Adaptation Strategies for Hydropower in the Indus Basin. Energy Policy, 165, Article 112987.
[6]  Dehghani, M., Riahi-Madvar, H., Hooshyaripor, F., Mosavi, A., Shamshirband, S., Zavadskas, E. K. et al. (2019). Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System. Energies, 12, Article 289.
https://doi.org/10.3390/en12020289
[7]  Haddeland, I., Heinke, J., Biemans, H., Eisner, S., Flörke, M., Hanasaki, N. et al. (2014). Global Water Resources Affected by Human Interventions and Climate Change. Proceedings of the National Academy of Sciences, 111, 3251-3256.
https://doi.org/10.1073/pnas.1222475110
[8]  Hoang, L. P. et al. (2021). Hydropower Development and Trade-Offs in the Mekong River Basin. Nature Sustainability, 4, 981-989.
[9]  IPCC (2023). Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report.
[10]  Kumar, N. et al. (2022). AI-Driven Reservoir Management for Climate Resilience. Renewable Energy, 198, 1232-1245.
[11]  Li, H., Xu, B., Riasi, A., Szulc, P., Chen, D., M’zoughi, F. et al. (2019). Performance Evaluation in Enabling Safety for a Hydropower Generation System. Renewable Energy, 143, 1628-1642.
https://doi.org/10.1016/j.renene.2019.05.113
[12]  Li, J., Wang, Z., Wu, X., Ming, B., Chen, L., & Chen, X. (2020). Evident Response of Future Hydropower Generation to Climate Change. Journal of Hydrology, 590, Article 125385.
https://doi.org/10.1016/j.jhydrol.2020.125385
[13]  Mishra, V. et al. (2022). Drought Risks to Hydropower in South Asia. Journal of Hydrology, 615, Article 128601.
[14]  Nguyen, T. H. et al. (2023). Climate Impacts on Hydropower in Vietnam’s Red River Basin. Energy for Sustainable Development, 75, 1-14.
[15]  Qin, P., Xu, H., Liu, M., Du, L., Xiao, C., Liu, L. et al. (2020). Climate Change Impacts on Three Gorges Reservoir Impoundment and Hydropower Generation. Journal of Hydrology, 580, Article 123922.
https://doi.org/10.1016/j.jhydrol.2019.123922
[16]  Rasul, G., Neupane, N., Hussain, A., & Pasakhala, B. (2021). Beyond Hydropower: Towards an Integrated Solution for Water, Energy and Food Security in South Asia. International Journal of Water Resources Development, 37, 466-490.
https://doi.org/10.1080/07900627.2019.1579705
[17]  Rawa, M., Abusorrah, A., Bassi, H., Mekhilef, S., Ali, Z. M., Abdel Aleem, S. H. E. et al. (2021). Economical-Technical-Environmental Operation of Power Networks with Wind-Solar-Hydropower Generation Using Analytic Hierarchy Process and Improved Grey Wolf Algorithm. Ain Shams Engineering Journal, 12, 2717-2734.
https://doi.org/10.1016/j.asej.2021.02.004
[18]  Sanchez, R.G., Kougias, I., Moner-Girona, M., Fahl, F., & Jäger-Waldau, A. (2021). Assessment of Floating Solar Photovoltaics Potential in Existing Hydropower Reservoirs in Africa. Renewable Energy, 169, 687-699.
https://doi.org/10.1016/j.renene.2021.01.041
[19]  Sapitang, M., M. Ridwan, W., Faizal Kushiar, K., Najah Ahmed, A., & El-Shafie, A. (2020). Machine Learning Application in Reservoir Water Level Forecasting for Sustainable Hydropower Generation Strategy. Sustainability, 12, Article 6121.
https://doi.org/10.3390/su12156121
[20]  Shrestha, A. et al. (2022). Sedimentation Challenges in Himalayan Hydropower. Water Resources Research, 58, e2021WR031234.
[21]  Smith, J., & Rahman, M. M. (2022). Floating Solar-Hydropower Synergies in Southeast Asia. Applied Energy, 324, Article 119678.
[22]  Sun, H., Awan, R. U., Nawaz, M. A., Mohsin, M., Rasheed, A. K., & Iqbal, N. (2021). Assessing the Socio-Economic Viability of Solar Commercialization and Electrification in South Asian Countries. Environment, Development and Sustainability, 23, 9875-9897.
https://doi.org/10.1007/s10668-020-01038-9
[23]  Sun, H., Mohsin, M., Alharthi, M., & Abbas, Q. (2020). Measuring Environmental Sustainability Performance of South Asia. Journal of Cleaner Production, 251, Article 119519.
https://doi.org/10.1016/j.jclepro.2019.119519
[24]  Tan, Q., Wen, X., Sun, Y., Lei, X., Wang, Z., & Qin, G. (2021). Evaluation of the Risk and Benefit of the Complementary Operation of the Large Wind-Photovoltaic-Hydropower System Considering Forecast Uncertainty. Applied Energy, 285, Article 116442.
https://doi.org/10.1016/j.apenergy.2021.116442
[25]  Turner, S. W. et al. (2021). Transboundary Hydropower Governance in the Mekong. Environmental Research Letters, 16, Article 064045.
[26]  Yalew, S. G., van Vliet, M. T. H., Gernaat, D. E. H. J., Ludwig, F., Miara, A., Park, C. et al. (2020). Impacts of Climate Change on Energy Systems in Global and Regional Scenarios. Nature Energy, 5, 794-802.
https://doi.org/10.1038/s41560-020-0664-z
[27]  Yang, W., Yang, J., Zeng, W., Tang, R., Hou, L., Ma, A. et al. (2019). Experimental Investigation of Theoretical Stability Regions for Ultra-Low Frequency Oscillations of Hydropower Generating Systems. Energy, 186, Article 115816.
https://doi.org/10.1016/j.energy.2019.07.146
[28]  Yang, Z., Liu, P., Cheng, L., Zhang, L., Ming, B., Xiong, M. et al. (2022). The Complementary Management of Large-Scale Hydro-Photovoltaic Hybrid Power Systems Reinforces Resilience to Climate Change. Journal of Hydrology, 612, Article 128214.
https://doi.org/10.1016/j.jhydrol.2022.128214
[29]  Zhong, W., Guo, J., Chen, L., Zhou, J., Zhang, J., & Wang, D. (2020). Future Hydropower Generation Prediction of Large-Scale Reservoirs in the Upper Yangtze River Basin under Climate Change. Journal of Hydrology, 588, Article 125013.
https://doi.org/10.1016/j.jhydrol.2020.125013
[30]  Zhou, F., Li, L., Zhang, K., Trajcevski, G., Yao, F., Huang, Y. et al. (2020). Forecasting the Evolution of Hydropower Generation. In Association for Computing Machinery (Ed)., Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (pp. 2861-2870). Association for Computing Machinery.
https://doi.org/10.1145/3394486.3403337

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133