全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Petrological Characteristics of the Gneissic Formations in the Kenema-Man Domain: Biankouma-Kouibli Sector (Cote d’Ivoire West African Craton)

DOI: 10.4236/ojg.2025.155012, PP. 245-264

Keywords: Archean, Metamorphism, TTG, Rare Earths, Geodynamics, Biankouma and Kouibli

Full-Text   Cite this paper   Add to My Lib

Abstract:

The gneissic formations constitute one of the major formations observed within the Archean domain of C?te d’Ivoire. Located in the northwest of C?te d’Ivoire, the gneissic formations of the Biankouma and Kouibli sectors were the subject of this study. In order to determine the geochemical and petrographic characteristics as well as the geotectonic environment of these rocks, petrographic studies associated with geochemical analyses were carried out. The geology of this area includes mainly metamorphic formations such as granulitic gneiss, charnockites, pink granulites, charnockitic gneiss and migmatitic gneiss with biotite. The mineralogy of these formations is dominated by quartz and feldspars associated with either biotite or hypersthene. The geochemical data indicate that these formations are generally granodioritic and tonalitic in composition; they are TTG. They have an essentially calc-alkaline affinity (strongly potassic), however tholeic occurrences are observable. The formations in the Biankouma and Kouibli sectors are weakly metaluminous to peraluminous and poor in alumina (Al2O3 < 15%). Rare earth spectra show an enrichment in light rare earths and a depletion in heavy rare earths. A negative europium anomaly is also observed. This anomaly implies the presence of feldspar, notably plagioclase in the residual liquid. Multi-element diagrams normalized to the early mantle showed enrichment in LILEs and depletion in HFSE. Negative Ta and Nb anomalies were observed in each of the samples. These indicate that the studied formations originate from the partial melting of the crust. Trace element data, including rare earths, indicate that the formations studied are derived from the partial melting of a basic composition rock containing garnet and hornblende. All samples have a composition of arc and collision granites and would be generated in a subduction zone.

References

[1]  Rudnick, R.L. (1995) Making Continental Crust. Nature, 378, 571-578.
https://doi.org/10.1038/378571a0
[2]  Dhuime, B., Hawkesworth, C.J., Cawood, P.A. and Storey, C.D. (2012) A Change in the Geodynamics of Continental Growth 3 Billion Years Ago. Science, 335, 1334-1336.
https://doi.org/10.1126/science.1216066
[3]  Fisher, C.M. and Vervoort, J.D. (2018) Using the Magmatic Record to Constrain the Growth of Continental Crust—The Eoarchean Zircon Hf Record of Greenland. Earth and Planetary Science Letters, 488, 79-91.
https://doi.org/10.1016/j.epsl.2018.01.031
[4]  Mareschal, J. and Jaupart, C. (2006) Archean Thermal Regime and Stabilization of the Cratons. In: Benn, K., Mareschal, J.-C. and Condie, K.C., Eds., Archean Geodynamics and Environments, American Geophysical Union, 61-73.
https://doi.org/10.1029/164gm06
[5]  Savanier, D., Guille, G., Maury, R.C., Blais, S., Guillou, H., Legendre C., et al. (2003) Geology, Petrology and Radiochronology of Nuku Hiva (Marquesas Island, French Polynesia). EGS-AGU-EUG Joint Assembly, Nice, 6-11 April 2003, 6-11.
[6]  Kouamelan, A.N., Delor, C. and Peucat, J. (1997) Geochronological Evidence for Reworking of Archean Terrains during the Early Proterozoic (2.1 Ga) in the Western Côte d’Ivoire (Man Rise-West African Craton). Precambrian Research, 86, 177-199.
https://doi.org/10.1016/s0301-9268(97)00043-0
[7]  François, C., Philippot, P. and Rey, P. (2012) Formation and Exhumation Mechanisms of High-Grade Rocks: Sagduction and Subduction Processes during the Archean. Geophysical Research Abstracts, 14, EGU2012-5136.
[8]  Lin, S., Parks, J., Heaman, L.M., Simonetti, A. and Corkery, M.T. (2013) Diapirism and Sagduction as a Mechanism for Deposition and Burial of “Timiskaming-Type” Sedimentary Sequences, Superior Province: Evidence from Detrital Zircon Geochronology and Implications for the Borden Lake Conglomerate in the Exposed Middle to Lower Crust in the Kapuskasing Uplift. Precambrian Research, 238, 148-157.
https://doi.org/10.1016/j.precamres.2013.09.012
[9]  François, C., Philippot, P., Rey, P. and Rubatto, D. (2014) Burial and Exhumation during Archean Sagduction in the East Pilbara Granite-Greenstone Terrane. Earth and Planetary Science Letters, 396, 235-251.
https://doi.org/10.1016/j.epsl.2014.04.025
[10]  Johnson, T.E., Brown, M., Goodenough, K.M., Clark, C., Kinny, P.D. and White, R.W. (2016) Subduction or Sagduction? Ambiguity in Constraining the Origin of Ultramafic-Mafic Bodies in the Archean Crust of NW Scotland. Precambrian Research, 283, 89-105.
https://doi.org/10.1016/j.precamres.2016.07.013
[11]  Canfield, D.E. (2005) The Early History of Atmospheric Oxygen: Homage to Robert M. Garrels. Annual Review of Earth and Planetary Sciences, 33, 1-36.
https://doi.org/10.1146/annurev.earth.33.092203.122711
[12]  Hou, K., Li, Y. and Wan, D. (2007) Constraints on the Archean Atmospheric Oxygen and Sulfur Cycle from Mass-Independent Sulfur Records from Anshan-Benxi BIFs, Liaoning Province, China. Science in China Series D: Earth Sciences, 50, 1471-1478.
https://doi.org/10.1007/s11430-007-0106-9
[13]  Koffi, G.R., Kouamelan, A.N., Allialy, M.E., Coulibaly, Y. and Peucat, J. (2020) Re-evaluation of Leonian and Liberian Events in the Geodynamical Evolution of the Man-Leo Shield (West African Craton). Precambrian Research, 338, Article 105582.
https://doi.org/10.1016/j.precamres.2019.105582
[14]  Pitra, P., Kouamelan, A.N., Ballèvre, M. and Peucat, J. (2010) Palaeoproterozoic High‐pressure Granulite Overprint of the Archean Continental Crust: Evidence for Homogeneous Crustal Thickening (Man Rise, Ivory Coast). Journal of Metamorphic Geology, 28, 41-58.
https://doi.org/10.1111/j.1525-1314.2009.00852.x
[15]  Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M. and Ganne, J. (2011) Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (~2.2-2.0 Ga), Western Burkina Faso. Precambrian Research, 191, 18-45.
https://doi.org/10.1016/j.precamres.2011.08.010
[16]  Milési, J.-P., Feybesse, J.-L. and Pinna, P. (2004) Geological Map of Africa 1:10,000,000, SIG Afrique Project. 20th Conference of African Geology, Orléans, 2-7 June 2004.
[17]  Thiéblemont, D., Goujou, J.C., Egal, E., Cocherie, A., Delor, C., Lafon, J.M., et al. (2004) Archean Evolution of the Leo Rise and Its Eburnean Reworking. Journal of African Earth Sciences, 39, 97-104.
https://doi.org/10.1016/j.jafrearsci.2004.07.059
[18]  Kouamelan, A.N., Peucat, J.J. and Delor, C. (1997) Reliques archéennes (3.15 Ga) au sein du magmatisme Birimien (2.1 Ga) de C6te d’Ivoire, Craton Ouest-Africain. Comptes rendus de lAcadémie des Sciences, 324, 719-727.
[19]  Allibone, A.H., McCuaig, T.C., Harris, D., Etheridge, M., Munroe, S., Byrne, D., et al. (2002) Structural Controls on Gold Mineralization at the Ashanti Deposit, Obuasi, Ghana. In: Goldfarb, R.J. and Nielsen, R.L., Eds., Integrated Methods for DiscoveryGlobal Exploration in the Twenty-First Century, Society of Economic Geologists, 65-94.
https://doi.org/10.5382/sp.09.04
[20]  Feybesse, J., Billa, M., Guerrot, C., Duguey, E., Lescuyer, J., Milesi, J., et al. (2006) The Paleoproterozoic Ghanaian Province: Geodynamic Model and Ore Controls, Including Regional Stress Modeling. Precambrian Research, 149, 149-196.
https://doi.org/10.1016/j.precamres.2006.06.003
[21]  Pouclet, A., Doumbia, S. and Vidal, M. (2006) Geodynamic Setting of the Birimian Volcanism in Central Ivory Coast (Western Africa) and Its Place in the Palaeoproterozoic Evolution of the Man Shield. Bulletin de la Société Géologique de France, 177, 105-121.
https://doi.org/10.2113/gssgfbull.177.2.105
[22]  Tshibubudze, A., Hein, K.A.A. and Marquis, P. (2009) The Markoye Shear Zone in NE Burkina Faso. Journal of African Earth Sciences, 55, 245-256.
https://doi.org/10.1016/j.jafrearsci.2009.04.009
[23]  Wane, O., Liégeois, J., Thébaud, N., Miller, J., Metelka, V. and Jessell, M. (2018) The Onset of the Eburnean Collision with the Kenema-Man Craton Evidenced by Plutonic and Volcanosedimentary Rock Record of the Masssigui Region, Southern Mali. Precambrian Research, 305, 444-478.
https://doi.org/10.1016/j.precamres.2017.11.008
[24]  Grenholm, M., Jessell, M. and Thébaud, N. (2019) Paleoproterozoic Volcano-Sedimentary Series in the Ca. 2.27-1.96 Ga Birimian Orogen of the Southeastern West African Craton. Precambrian Research, 328, 161-192.
https://doi.org/10.1016/j.precamres.2019.04.005
[25]  Grenholm, M., Jessell, M. and Thébaud, N. (2019) A Geodynamic Model for the Paleoproterozoic (ca. 2.27-1.96 Ga) Birimian Orogen of the Southern West African Craton—Insights into an Evolving Accretionary-Collisional Orogenic System. Earth-Science Reviews, 192, 138-193.
https://doi.org/10.1016/j.earscirev.2019.02.006
[26]  McFarlane, H.B., Thébaud, N., Parra-Avila, L.A., Armit, R., Spencer, C., Ganne, J., et al. (2019) Onset of the Supercontinent Cycle: Evidence for Multiple Oceanic Arc Accretion Events in the Paleoproterozoic Sefwi Greenstone Belt of the West African Craton. Precambrian Research, 335, Article 105450.
https://doi.org/10.1016/j.precamres.2019.105450
[27]  Hirdes, W. and Davis, D.W. (2002) U-Pb Geochronology of Paleoproterozoic Rocks in the Southern Part of the Kedougou-Kéniéba Inlier, Senegal, West Africa: Evidence for Diachronous Accretionary Development of the Eburnean Province. Precambrian Research, 118, 83-99.
https://doi.org/10.1016/s0301-9268(02)00080-3
[28]  Gasquet, D., Barbey, P., Adou, M. and Paquette, J.L. (2003) Structure, Sr-Nd Isotope Geochemistry and Zircon U-Pb Geochronology of the Granitoids of the Dabakala Area (Côte d’Ivoire): Evidence for a 2.3 Ga Crustal Growth Event in the Palaeoproterozoic of West Africa? Precambrian Research, 127, 329-354.
https://doi.org/10.1016/s0301-9268(03)00209-2
[29]  Mériaud, N., Thébaud, N., Masurel, Q., Hayman, P., Jessell, M., Kemp, A., et al. (2020) Lithostratigraphic Evolution of the Bandamian Volcanic Cycle in Central Côte d’Ivoire: Insights into the Late Eburnean Magmatic Resurgence and Its Geodynamic Implications. Precambrian Research, 347, Article 105847.
https://doi.org/10.1016/j.precamres.2020.105847
[30]  Kouamelan, A.N. (1996) Géochronologie et Géochimie des formations archéennes et protérozoïques de la dorsale de Man en Côte d’Ivoire: Implication pour la transition Archéen Protérozoïque. Mémoire Géosciences Rennes n˚73.
[31]  Camil J. (1984) Pétrographie, chronologie des ensembles granulitiques archéens et formations associées de la région de Man (Côte d’Ivoire). Implications pour l’histoire géologique du craton Ouest Africain. Thèse Doctor, Université d’Abidjan.
[32]  Gouedji, F., Picard, C., Coulibaly, Y., Audet, M., Auge, T., Goncalves, P., et al. (2014) The Samapleu Mafic-Ultramafic Intrusion and Its Ni-Cu-PGE Mineralization: An Eburnean (2.09 Ga) Feeder Dyke to the Yacouba Layered Complex (Man Archean Craton, Western Ivory Coast). Bulletin de la Société Géologique de France, 185, 393-411.
https://doi.org/10.2113/gssgfbull.185.6.393
[33]  Peccerillo, A. and Taylor, S.R. (1976) Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology, 58, 63-81.
https://doi.org/10.1007/bf00384745
[34]  McDonough, W.F., Sun, S.-S., Ringwood, A.E., Jagoutz, E. and Hofmann, A.W. (1992) Potassium, Rubidium, and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth. Geochimica et Cosmochimica Acta, 56, 1001-1012.
https://doi.org/10.1016/0016-7037(92)90043-i
[35]  Barbey, P. and Cuney, M. (1982) K, Rb, Sr, Ba, U and Th Geochemistry of the Lapland Granulites (Fennoscandia). LILE Fractionation Controlling Factors. Contributions to Mineralogy and Petrology, 81, 304-316.
https://doi.org/10.1007/bf00371685
[36]  Coolen, J.J.M.M.M. (1980) Chemical Petrology of the Furua Granulite Complex, Southern Tanzania. GUA.
[37]  Barker, F. (1979) Trondhjemite: Definition, Environment and Hypotheses of Origin. Developments in Petrology, 6, 1-12.
https://doi.org/10.1016/b978-0-444-41765-7.50006-x
[38]  Martin, H. (1994) Chapter 6 the Archean Grey Gneisses and the Genesis of Continental Crust. Developments in Precambrian Geology, 11, 205-259.
https://doi.org/10.1016/s0166-2635(08)70224-x
[39]  Barker, F. and Arth, J.G. (1976) Generation of Trondhjemitic-Tonalitic Liquids and Archean Bimodal Trondhjemite-Basalt Suites. Geology, 4, 596-600.
https://doi.org/10.1130/0091-7613(1976)4<596:gotlaa>2.0.co;2
[40]  Debon, F. and Le Fort, P. (1988) A Cationic Classification of Common Plutonic Rocks and Their Magmatic Associations: Principles, Method, Applications. Bulletin de Minéralogie, 111, 493-510.
https://doi.org/10.3406/bulmi.1988.8096
[41]  Cartwright, I. (1990) Prograde Metamorphism, Anatexis, and Retrogression of the Scourian Complex, North-West Scotland. In: Ashworth, J.R. and Brown, M., Eds., High-Temperature Metamorphism and Crustal Anatexis, Springer, 371-399.
https://doi.org/10.1007/978-94-015-3929-6_13
[42]  Arth, J.G., Barker, F., Peterman, Z.E. and Friedman, I. (1978) Geochemistry of the Gabbro-Diorite-Tonalite-Trondhjemite Suite of Southwest Finland and Its Implications for the Origin of Tonalitic and Trondhjemitic Magmas. Journal of Petrology, 19, 289-316.
https://doi.org/10.1093/petrology/19.2.289
[43]  Arth, J.G. and Hanson, G.N. (1975) Geochemistry and Origin of the Early Precambrian Crust of Northeastern Minnesota. Geochimica et Cosmochimica Acta, 39, 325-362.
https://doi.org/10.1016/0016-7037(75)90200-8
[44]  Martin, H. (1986) Effect of Steeper Archean Geothermal Gradient on Geochemistry of Subduction-Zone Magmas. Geology, 14, 753-756.
https://doi.org/10.1130/0091-7613(1986)14<753:eosagg>2.0.co;2
[45]  MARTIN, H. (1987) Petrogenesis of Archaean Trondhjemites, Tonalites, and Granodiorites from Eastern Finland: Major and Trace Element Geochemistry. Journal of Petrology, 28, 921-953.
https://doi.org/10.1093/petrology/28.5.921
[46]  Martin, H. (1993) The Mechanisms of Petrogenesis of the Archaean Continental Crust—Comparison with Modern Processes. Lithos, 30, 373-388.
https://doi.org/10.1016/0024-4937(93)90046-f
[47]  Drummond, M.S. and Defant, M.J. (1990) A Model for Trondhjemite‐Tonalite‐Dacite Genesis and Crustal Growth via Slab Melting: Archean to Modern Comparisons. Journal of Geophysical Research: Solid Earth, 95, 21503-21521.
https://doi.org/10.1029/jb095ib13p21503
[48]  Foley, S., Tiepolo, M. and Vannucci, R. (2002) Growth of Early Continental Crust Controlled by Melting of Amphibolite in Subduction Zones. Nature, 417, 837-840.
https://doi.org/10.1038/nature00799
[49]  Martin, H., Moyen, J., Guitreau, M., Blichert-Toft, J. and Le Pennec, J. (2014) Why Archaean TTG Cannot Be Generated by MORB Melting in Subduction Zones. Lithos, 198, 1-13.
https://doi.org/10.1016/j.lithos.2014.02.017
[50]  Pearce, J.A., Harris, N.B.W. and Tindle, A.G. (1984) Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology, 25, 956-983.
https://doi.org/10.1093/petrology/25.4.956

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133