|
基于建构主义理论的数学教学案例——以“椭圆”为例
|
Abstract:
文章以“椭圆及其标准方程”教学为例,基于建构主义理论开展跨学科教学。圆锥曲线是高中数学重难点,椭圆传统教学中学生学习被动、难理解定义。文章阐释相关理论概念,梳理研究现状,明确价值。经教学分析确定重难点、学情及目标,将开普勒第一定律融入椭圆教学。通过情境唤起、操作探究、数形推导、应用巩固、总结提升、课后练习等步骤,提升学生课堂参与度,助力物理概念向数学定义转化,培养跨学科思维,为圆锥曲线后续教学及高中数学教学提供新思路。
The article takes “ellipse and its standard equation” teaching as an example of interdisciplinary teaching based on constructivist theory. Conic curve is a difficult point in high school mathematics, and the traditional teaching of ellipse is passive and difficult for students to learn and understand the definition. The article explains the relevant theoretical concepts, sorts out the current state of research, and clarifies the value. After analyzing the teaching to determine the key points, learning conditions and objectives, Kepler’s first law is integrated into the teaching of ellipses. Through the steps of contextual arousal, operational exploration, numerical and morphological derivation, application and consolidation, summarization and enhancement, and post-course practice, the article enhances students’ participation in the classroom, facilitates the transformation of physical concepts into mathematical definitions, cultivates interdisciplinary thinking, and provides new ideas for the subsequent teaching of conic curves and the teaching of mathematics in high schools.
[1] | 中华人民共和国教育部. 普通高中数学课程标准(2017年版2020年修订) [M]. 北京: 人民教育出版社, 2020: 40. |
[2] | 谢玉平. 高中数学跨学科整合教学实践研究[J]. 广西教育, 2022(35): 66-68. |
[3] | 陈琦, 刘儒德. 当代教育心理学[M]. 北京: 北京师范大学出版社, 2019. |
[4] | 段素芬. 丹麦中学数学与科学跨学科教学的启示[J]. 教学月刊(中学版), 2014(3): 3-6. |
[5] | 杜惠洁, 舒尔茨. 德国跨学科教学理念与教学设计分析[J]. 全球教育展望, 2005, 34(8): 28-32. |
[6] | 李序花, 冯春艳, 马红亮, 等. 跨学科主题教学: 基本内涵、价值向度及设计路径[J]. 天津师范大学学报(基础教育版), 2023, 24(6): 1-6. |
[7] | Jonassen, D.H. (2000) Toward a Design Theory of Problem Solving. Educational Technology Research and Development, 48, 63-85. https://doi.org/10.1007/bf02300500 |
[8] | 李洪修, 崔亚雪. 跨学科教学的要素分析、问题审视与优化路径[J]. 课程∙教材∙教法, 2023, 43(1): 74-81. |
[9] | 于国文, 曹一鸣. 跨学科教学研究: 以芬兰现象教学为例[J]. 外国中小学教育, 2017(7): 57-63. |
[10] | 李亚琼, 宁连华, 黄贤明. 跨学科视域下数学留白创造式教学的内涵与策略[J]. 教学与管理, 2024(27): 83-87. |
[11] | 黄翔, 童莉, 史宁中. 谈数学课程与教学中的跨学科思维[J]. 课程∙教材∙教法, 2021, 41(7): 106-111. |
[12] | 任学宝. 跨学科主题教学的内涵、困境与突破[J]. 课程∙教材∙教法, 2022, 42(4): 59-64, 72. |
[13] | Finnish National Board of Education (2016) National Core Curriculum for Basic Education 2014. English Edition. Finnish National Board of Education. |
[14] | 王子涵, 刘茂军. 美国《下一代科学教育标准》中跨学科概念“模式”的特点与启示[J]. 中小学教材教学, 2022(2): 46-50. |
[15] | 开普勒. 宇宙和谐论[M]. 北京: 中国社会科学出版社, 1619. |
[16] | 华志远. 以高中数学为主导的跨学科教学探索与思考[J]. 数学通报, 2022, 61(6): 30-33, 37. |