全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于磁致伸缩机制电磁超声的焊缝缺陷检测研究
Research on Weld Defect Detection Using Electromagnetic Ultrasonic Based on Magnetostrictive Mechanism

DOI: 10.12677/jsta.2025.133031, PP. 313-326

Keywords: 无损检测,电磁超声换能器,磁致伸缩机制,焊缝缺陷
Non-Destructive Testing
, Electromagnetic Acoustic Transducer, Magnetostrictive Mechanism, Weld Defects

Full-Text   Cite this paper   Add to My Lib

Abstract:

电磁超声换能器(EMAT)凭借其非接触式检测等优势,在工业无损检测中得到了广泛应用。然而,对于焊缝缺陷检测,由于焊缝区域中材料组织的粗大化,超声波检测过程中漫反射回波信号增多,导致检测信号强度大幅衰减,信噪比下降。本文针对常规洛伦兹力机制EMAT在焊缝缺陷检测中存在的信号微弱、换能效率低等问题,提出通过在试件表面涂覆磁致伸缩涂层,以主动构建磁致伸缩换能区域,从而实现焊缝缺陷检测的方法。通过搭建电磁超声检测实验平台,研究了磁致伸缩机制EMAT接收信号的幅值与偏置磁场强度的关系,优选了最佳磁场配置;采用磁致伸缩机制EMAT对根部未焊透、坡口未融合和夹渣三种焊缝缺陷进行实验检测,实验结果表明,与常规洛伦兹力机制EMAT相比,磁致伸缩机制EMAT对三种缺陷的检测信号幅值分别提升了4.5倍、2.4倍和6.3倍。
Electromagnetic acoustic transducers (EMATs) have been widely used in industrial non-destructive testing due to their advantages such as non-contact detection. However, for weld defect detection, the coarsening of the material microstructure in the weld zone leads to increased diffuse reflection echoes during ultrasonic testing, resulting in significant attenuation of the detection signal strength and a decrease in the signal-to-noise ratio. To address the issues of weak signals and low transduction efficiency in conventional Lorentz force-based EMATs for weld defect detection, this paper proposes a method that involves coating the specimen surface with a magnetostrictive layer to actively construct a magnetostrictive transduction zone, thereby enabling effective weld defect detection. By establishing an electromagnetic ultrasonic testing experimental platform, the relationship between the amplitude of the received signals from the magnetostrictive EMAT and the bias magnetic field strength was investigated, and the optimal magnetic field configuration was determined. Experiments were conducted using the magnetostrictive EMAT to detect three types of weld defects: incomplete root penetration, lack of sidewall fusion, and slag inclusion. The results demonstrate that, compared to the conventional Lorentz force-based EMAT, the magnetostrictive EMAT improved the signal amplitudes for detecting these defects by 4.5 times, 2.4 times, and 6.3 times, respectively.

References

[1]  赵家炜, 蔺健宁. 特种设备检验中无损检测技术的应用分析[J]. 中国设备工程, 2024(21): 153-155.
[2]  龚思璠, 潘伟, 王庆云, 等. 碳钢焊缝典型缺陷的非线性特征[J]. 无损检测, 2024, 46(9): 83-89.
[3]  陈薇, 蒋科, 张振忠, 等. 无损检测方法在钢结构工程焊缝中的应用[J]. 中国金属通报, 2022(6): 84-86.
[4]  陈晓明, 王丽, 马良, 等. 钢筋工程焊缝质量检测技术研究进展[J]. 北京理工大学学报, 2024, 44(12): 1215-1224.
[5]  张悦, 杜政熠, 程浩男, 等. 在役压力管道的超声检测技术综述[J]. 化工设备与管道, 2024, 61(2): 103-110.
[6]  马早军. 电磁超声SH导波铝板缺陷检测技术研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2018.
[7]  Gaerttner, M.R., Wallace, W.D. and Maxfield, B.W. (1969) Experiments Relating to the Theory of Magnetic Direct Generation of Ultrasound in Metals. Physical Review, 184, 702-704.
https://doi.org/10.1103/physrev.184.702
[8]  石文泽, 胡力萍, 卢超, 等. 仅线圈式电磁超声检测方法与提离特性研究[J]. 传感技术学报, 2024, 37(10): 1681-1691.
[9]  刘博涵, 陈宗泽, 于建新, 等. 基于电磁超声换能器的SH型焊缝导波激励方法[J]. 仪器仪表学报, 2024, 45(12): 275-283.
[10]  应家仪, 胡利晨, 张翰林, 等. 气体冷却器T型角焊缝高温电磁超声检测[J]. 化工机械, 2022, 49(1): 153-155.
[11]  方志泓, 王理博, 朱煜, 等. 核电站蒸汽发生器传热管电磁超声导波自动化检测系统设计[J]. 电子测量与仪器学报, 2024, 38(4): 225-233.
[12]  程偲, 姜春, 宋旖旎, 等. 直缝焊管焊缝质量电磁超声检测方法研究[J]. 焊管, 2023, 46(1): 19-23.
[13]  杨斌, 易朋兴, 郝峥旭. 基于电磁超声的小样本铝板表面缺陷检测方法[J]. 电子测量技术, 2024, 47(3): 109-115.
[14]  董明, 李航辉, 马宏伟, 等. 高纯度横波蝶形线圈电磁超声换能器优化设计[J]. 电工技术学报, 2024, 39(11): 3270-3279.
[15]  张京军, 刘敏, 贾国平, 等. 正交试验理论线聚焦电磁超声换能器优化设计[J]. 中国测试, 2024, 50(2): 91-99.
[16]  姜颖, 郭新峰, 项延训. SH电磁超声换能器优化设计及粘接强度测量[J]. 声学技术, 2023, 42(5): 695-700.
[17]  梁宝. 用于高温金属材料检测的电磁超声换能器研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2023.
[18]  Voltmer, F.W., White, R.M. and Turner, C.W. (1969) Magnetostrictive Generation of Surface Elastic Waves. Applied Physics Letters, 15, 153-154.
https://doi.org/10.1063/1.1652946
[19]  Thompson, R.B. (1973) A Model for the Electromagnetic Generation and Detection of Rayleigh and Lamb Waves. IEEE Transactions on Sonics and Ultrasonics, 20, 340-346.
https://doi.org/10.1109/t-su.1973.29770
[20]  韩飞, 赵新航, 陈锴迪, 等. 基于磁致伸缩的电磁超声钢板机械性能检测方法[J]. 计算机测量与控制, 2023, 31(6): 73-79+86.
[21]  Qi, Q., Shen, G., Zheng, Y., Gao, X., Huang, S., Li, J., et al. (2022) The Microstructural Evolution and Ultrasonic Guided Wave Transduction Performance of Annealed Magnetostrictive (Fe83Ga17)99.9(NbC)0.1 Thin Sheets. Journal of Magnetism and Magnetic Materials, 548, Article 168938.
https://doi.org/10.1016/j.jmmm.2021.168938
[22]  Kim, Y.Y. and Kwon, Y.E. (2015) Review of Magnetostrictive Patch Transducers and Applications in Ultrasonic Nondestructive Testing of Waveguides. Ultrasonics, 62, 3-19.
https://doi.org/10.1016/j.ultras.2015.05.015
[23]  姜涛, 薛昌盛, 皮钧, 等. 钴铁氧体磁致伸缩超声换能器设计及输出特性[J]. 陕西师范大学学报(自然科学版), 2024, 52(6): 67-73.
[24]  洪利, 尚鲁龙, 邱忠超, 等. 基于逆磁致伸缩效应的铁磁构件应力检测方法研究[J]. 仪表技术与传感器, 2020(6): 92-94+99.
[25]  Zhu, H., Yang, D. and Zhu, L. (2007) Hydrothermal Growth and Characterization of Magnetite (Fe3O4) Thin Films. Surface and Coatings Technology, 201, 5870-5874.
https://doi.org/10.1016/j.surfcoat.2006.10.037

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133