|
多组学孟德尔随机化分析揭示免疫相关基因表达和DNA甲基化在气道过敏性疾病中的潜在机制
|
Abstract:
目的:识别免疫相关基因在气道过敏性疾病(Airway allergic disease, AAD)中的因果效应和潜在机制。方法:从ImmPort数据库提取免疫相关基因。使用基于汇总数据的孟德尔随机化(Summary data-based Mendelian randomization, SMR)对过敏性鼻炎(Allergic rhinitis, AR)和过敏性哮喘(Allergic asthma, AA)的全基因组关联研究(genome-wide association study, GWAS)数据与血液中的表达数量性状位点(expression quantitative trait loci, eQTL)和甲基化数量性状基因位点(methylation quantitative trait loci, mQTL)进行整合分析,同时结合共定位分析共同确定免疫相关基因在气道过敏性疾病风险中潜在的调控机制。结果:通过整合SMR分析和共定位分析结果,确定TNFRSF1B表达[OR = 1.481, 95% CI (1.235~1.775), PFDR = 0.004]和甲基化位点cg13471521 [OR = 0.765, 95% CI (0.661~0.884), PFDR = 0.033]与AR发病相关;CD247 [OR = 0.813, 95% CI (0.721~0.915), PFDR = 0.024]、FCER1G [ OR = 1.068, 95% CI (1.029~1.109), PFDR = 0.213]和PSMD5 [OR = 1.259, 95% CI (1.101~1.439), PFDR = 0.026]与AA风险相关,以及它们的甲基化位点cg01833122、cg10375409、cg09070378、cg09833538和cg14255062与AA发病相关。结论:这项研究通过孟德尔随机化和共定位分析阐明了免疫相关基因表达和DNA甲基化在气道过敏性疾病发病中的作用,为临床实践提供了新的方向。
Objective: To identify the causal effects and potential mechanisms of immune-related genes in airway allergic disease (AAD). Method: Immune-related genes were extracted from the ImmPort database. Summary data-based Mendelian randomization (SMR) was used to integrate genome-wide association study (GWAS) data for allergic rhinitis (AR) and allergic asthma (AA) with expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) in blood, and combined colocalization analysis was performed to jointly determine the potential regulatory mechanisms of immune-related genes in the risk of airway allergic diseases. Results: By integrating SMR analysis and colocalization analysis results, we identified that TNFRSF1B expression [OR = 1.481, 95% CI (1.235~1.775), PFDR = 0.004] and methylation site cg13471521 [OR = 0.765, 95% CI (0.661~0.884), PFDR = 0.033] were associated with the onset of AR; CD247 [OR = 0.813, 95% CI (0.721~0.915), PFDR = 0.024], FCER1G [OR = 1.068, 95% CI (1.029~1.109), PFDR = 0.213], and PSMD5 [OR = 1.259, 95% CI (1.101~1.439), PFDR = 0.026] were associated with the risk of AA, as well as their methylation sites cg01833122,
[1] | Haccuria, A., Van Muylem, A., Malinovschi, A., Doan, V. and Michils, A. (2018) Small Airways Dysfunction: The Link between Allergic Rhinitis and Allergic Asthma. European Respiratory Journal, 51, Article 1701749. https://doi.org/10.1183/13993003.01749-2017 |
[2] | Michils, A., Elkrim, Y., Haccuria, A. and Van Muylem, A. (2011) Adenosine 5’-Monophosphate Challenge Elicits a More Peripheral Airway Response than Methacholine Challenge. Journal of Applied Physiology, 110, 1241-1247. https://doi.org/10.1152/japplphysiol.01401.2010 |
[3] | Jutel, M. and Akdis, C.A. (2011) Immunological Mechanisms of Allergen-Specific Immunotherapy. Allergy, 66, 725-732. https://doi.org/10.1111/j.1398-9995.2011.02589.x |
[4] | Potaczek, D.P., Harb, H., Michel, S., Alhamwe, B.A., Renz, H. and Tost, J. (2017) Epigenetics and Allergy: From Basic Mechanisms to Clinical Applications. Epigenomics, 9, 539-571. https://doi.org/10.2217/epi-2016-0162 |
[5] | Li, J., Sha, J., Sun, L., Zhu, D. and Meng, C. (2021) Contribution of Regulatory T Cell Methylation Modifications to the Pathogenesis of Allergic Airway Diseases. Journal of Immunology Research, 2021, 1-8. https://doi.org/10.1155/2021/5590217 |
[6] | Li, X., Gao, H., Liu, l., Yang, Y., Sun, S. and Liu, Y. (2024) Genetic Polymorphisms of BACH2, a Key Gene Regulating Th2 Immune Response, Increasing Risk of Allergic Rhinitis. Gene, 926, Article 148624. https://doi.org/10.1016/j.gene.2024.148624 |
[7] | Burgess, S., Davey Smith, G., Davies, N.M., Dudbridge, F., Gill, D., Glymour, M.M., et al. (2019) Guidelines for Performing Mendelian Randomization Investigations. Wellcome Open Research, 4, Article 186. https://doi.org/10.12688/wellcomeopenres.15555.1 |
[8] | Zhu, Z., Zhang, F., Hu, H., Bakshi, A., Robinson, M.R., Powell, J.E., et al. (2016) Integration of Summary Data from GWAS and eQTL Studies Predicts Complex Trait Gene Targets. Nature Genetics, 48, 481-487. https://doi.org/10.1038/ng.3538 |
[9] | McRae, A.F., Marioni, R.E., Shah, S., Yang, J., Powell, J.E., Harris, S.E., et al. (2018) Identification of 55,000 Replicated DNA Methylation QTL. Scientific Reports, 8, Article No. 17605. https://doi.org/10.1038/s41598-018-35871-w |
[10] | Võsa, U., Claringbould, A., Westra, H., Bonder, M.J., Deelen, P., Zeng, B., et al. (2021) Large-Scale Cis and Trans-eQTL Analyses Identify Thousands of Genetic Loci and Polygenic Scores That Regulate Blood Gene Expression. Nature Genetics, 53, 1300-1310. https://doi.org/10.1038/s41588-021-00913-z |
[11] | Chauquet, S., Zhu, Z., O’Donovan, M.C., Walters, J.T.R., Wray, N.R. and Shah, S. (2021) Association of Antihypertensive Drug Target Genes with Psychiatric Disorders. JAMA Psychiatry, 78, 623-631. https://doi.org/10.1001/jamapsychiatry.2021.0005 |
[12] | Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D., Wallace, C., et al. (2014) Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using Summary Statistics. PLOS Genetics, 10, e1004383. https://doi.org/10.1371/journal.pgen.1004383 |
[13] | Chen, J., Ruan, X., Sun, Y., Lu, S., Hu, S., Yuan, S., et al. (2024) Multi-Omic Insight into the Molecular Networks of Mitochondrial Dysfunction in the Pathogenesis of Inflammatory Bowel Disease. eBioMedicine, 99, Article 104934. https://doi.org/10.1016/j.ebiom.2023.104934 |
[14] | Xu, S., Li, X., Zhang, S., Qi, C., Zhang, Z., Ma, R., et al. (2023) Oxidative Stress Gene Expression, DNA Methylation, and Gut Microbiota Interaction Trigger Crohn’s Disease: A Multi-Omics Mendelian Randomization Study. BMC Medicine, 21, Article No. 179. https://doi.org/10.1186/s12916-023-02878-8 |
[15] | Alshevskaya, A., Zhukova, J., Kireev, F., Lopatnikova, J., Evsegneeva, I., Demina, D., et al. (2022) Redistribution of TNF Receptor 1 and 2 Expression on Immune Cells in Patients with Bronchial Asthma. Cells, 11, Article 1736. https://doi.org/10.3390/cells11111736 |
[16] | Ahmad, S., Azid, N.A., Boer, J.C., Lim, J., Chen, X., Plebanski, M., et al. (2018) The Key Role of TNF-TNFR2 Interactions in the Modulation of Allergic Inflammation: A Review. Frontiers in Immunology, 9, Article 2572. https://doi.org/10.3389/fimmu.2018.02572 |
[17] | Li, X., Chen, X., Gu, W., Guo, Y., Cheng, Y., Peng, J., et al. (2017) Impaired TNF/TNFR2 Signaling Enhances Th2 and Th17 Polarization and Aggravates Allergic Airway Inflammation. American Journal of Physiology-Lung Cellular and Molecular Physiology, 313, L592-L601. https://doi.org/10.1152/ajplung.00409.2016 |
[18] | Zhang, X., Cai, J., Song, F. and Yang, Z. (2022) Prognostic and Immunological Role of FCER1G in Pan-Cancer. Pathology—Research and Practice, 240, Article 154174. https://doi.org/10.1016/j.prp.2022.154174 |
[19] | Fu, L., Cheng, Z., Dong, F., Quan, L., Cui, L., Liu, Y., et al. (2020) Enhanced Expression of FCER1G Predicts Positive Prognosis in Multiple Myeloma. Journal of Cancer, 11, 1182-1194. https://doi.org/10.7150/jca.37313 |
[20] | Shin, J. and Greer, A.M. (2015) The Role of Fcεri Expressed in Dendritic Cells and Monocytes. Cellular and Molecular Life Sciences, 72, 2349-2360. https://doi.org/10.1007/s00018-015-1870-x |
[21] | Xuan, D.T.M., Wu, C., Kao, T., Ta, H.D.K., Anuraga, G., Andriani, V., et al. (2021) Prognostic and Immune Infiltration Signatures of Proteasome 26S Subunit, Non-Atpase (PSMD) Family Genes in Breast Cancer Patients. Aging, 13, 24882-24913. https://doi.org/10.18632/aging.203722 |
[22] | Briones, A.C., Megino, R.F., Marin, A.V., Chacón-Arguedas, D., García-Martinez, E., Balastegui-Martín, H., et al. (2024) Nonsense CD247 Mutations Show Dominant-Negative Features in T-Cell Receptor Expression and Function. Journal of Allergy and Clinical Immunology, 154, 1022-1032. https://doi.org/10.1016/j.jaci.2024.06.019 |
[23] | Zhu, Z., Lee, P.H., Chaffin, M.D., Chung, W., Loh, P., Lu, Q., et al. (2018) A Genome-Wide Cross-Trait Analysis from UK Biobank Highlights the Shared Genetic Architecture of Asthma and Allergic Diseases. Nature Genetics, 50, 857-864. https://doi.org/10.1038/s41588-018-0121-0 |
[24] | Portelli, M.A., Rakkar, K., Hu, S., Guo, Y. and Adcock, I.M. (2021) Translational Analysis of Moderate to Severe Asthma GWAS Signals into Candidate Causal Genes and Their Functional, Tissue-Dependent and Disease-Related Associations. Frontiers in Allergy, 2, Article 73841. https://doi.org/10.3389/falgy.2021.738741 |