|
基于Python的历史文化景区用电特征可视化预测研究
|
Abstract:
随着黑龙江特色文旅产业的快速发展,如何使历史文化景区具备绿色安全的运营方式开始变得备受关注。使用基于Python语言等技术对文化景区用电特征进行预测,可以行之有效地解决景区运营统筹管理问题,并为今后特色文旅产业规划提供有力依据。使用Python编程语言在TensorFlow框架的基础上,实现对景区能耗方面数据的分析,包括数据集内的数据分布、用电稳定性和用电量损失函数曲线等情况进行快速清晰的展示,科学准确地对此类特定文旅的用电特征进行判断,并对未来短时间内的用电量进行快速准确的预测等功能。
With the rapid development of Heilongjiang’s characteristic cultural and tourism industry, how to make historical and cultural scenic spots have green and safe operation methods has become a concern. Using technologies such as Python to predict the electricity consumption characteristics of cultural scenic spots can effectively solve the problem of overall operation and management of scenic spots, and provide strong basis for future planning of characteristic cultural and tourism industries. Using Python programming language on the basis of TensorFlow framework, the analysis of energy consumption data in scenic spots is implemented, including the rapid and clear display of data distribution, electricity stability, and electricity loss function curve in the dataset. Scientific and accurate judgment of the electricity consumption characteristics of such specific cultural tourism is made, and the future electricity consumption in a short period of time is predicted quickly and accurately.
[1] | 何晓燕, 陆勇, 顾丽韵. 基于标准体系的公共建筑智慧能源管控策略研究[J]. 上海节能, 2021, 11(1): 1209-1213. |
[2] | 徐崇钧, 耿光超, 俞侃. 绿色居住建筑碳排放精细化估算方法[J]. 能源工程, 2024, 44(1): 60-67. |
[3] | 高晓佳, 王宏志. 基于数据驱动的公共建筑用电能耗短期预测[J]. 计算机仿真, 2022, 39(10): 89-93. |
[4] | 廖虹云. 推进“十四五”建筑领域低碳发展研究[J]. 中国能源, 2021, 43(4): 7-11. |
[5] | 路晓青. 基于机器学习的电力系统负荷预测与动态调节策略研究[J]. 电气技术与经济, 2024, 12(4): 356-358. |
[6] | 江铃燚, 郑艺峰, 陈澈. 有监督深度学习的优化方法研究综述[J]. 中国图象图形学报, 2023, 28(4): 963-983. |
[7] | 侯慧, 何梓姻, 陈跃. 基于深度强化学习区间多目标优化的智能建筑低碳优化调度[J]. 电力系统自动化, 2023, 47(21): 47-57. |
[8] | 王季, 李润清, 刘屾. 基于改进长短期记忆网络的短期负荷预测[J]. 电气自动化, 2022, 44(4): 61-63. |
[9] | 付红军, 朱劭璇, 王步华. 基于长短期记忆神经网络的检修态电网低频振荡风险预测方法[J]. 发电技术, 2024, 45(2): 353-362. |
[10] | 任建吉, 位慧慧, 邹卓霖. 基于CNN-BiLSTM-Attention的超短期电力负荷预测[J]. 电力系统保护与控制, 2022, 50(8): 108-116. |